Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Drew D. Kiraly is active.

Publication


Featured researches published by Drew D. Kiraly.


The Journal of Neuroscience | 2008

Kalirin 7 is required for synaptic structure and function

Xin-Ming Ma; Drew D. Kiraly; Eric D. Gaier; Yanping Wang; Eunji Kim; Eric S. Levine; Betty A. Eipper; Richard E. Mains

Rho GTPases activated by GDP/GTP exchange factors (GEFs) play key roles in the developing and adult nervous system. Kalirin-7 (Kal7), the predominant adult splice form of the multifunctional Kalirin RhoGEF, includes a PDZ [postsynaptic density-95 (PSD-95)/Discs large (Dlg)/zona occludens-1 (ZO-1)] binding domain and localizes to the postsynaptic side of excitatory synapses. In vitro studies demonstrated that overexpression of Kal7 increased dendritic spine density, whereas reduced expression of endogenous Kal7 decreased spine density. To evaluate the role of Kal7 in vivo, mice lacking the terminal exon unique to Kal7 were created. Mice lacking both copies of the Kal7 exon (Kal7KO) grew and reproduced normally. Golgi impregnation and electron microscopy revealed decreased hippocampal spine density in Kal7KO mice. Behaviorally, Kal7KO mice showed decreased anxiety-like behavior in the elevated zero maze and impaired acquisition of a passive avoidance task, but normal behavior in open field, object recognition, and radial arm maze tasks. Kal7KO mice were deficient in hippocampal long-term potentiation. Western blot analysis confirmed the absence of Kal7 and revealed compensatory increases in larger Kalirin isoforms. PSDs purified from the cortices of Kal7KO mice showed a deficit in Cdk5, a kinase known to phosphorylate Kal7 and play an essential role in synaptic function. The early stages of excitatory synaptic development proceeded normally in cortical neurons prepared from Kal7KO mice, with decreased excitatory synapses apparent only after 21 d in vitro. Expression of exogenous Kal7 in Kal7KO neurons rescued this deficit. Kal7 plays an essential role in synaptic structure and function, affecting a subset of cognitive processes.


RNA | 2011

microRNA-Seq reveals cocaine-regulated expression of striatal microRNAs.

Jodi Eipper-Mains; Drew D. Kiraly; Dasaradhi Palakodeti; Richard E. Mains; Betty A. Eipper; Brenton R. Graveley

MicroRNAs (miRNAs) are small RNAs that modulate gene expression by binding target mRNAs. The hundreds of miRNAs expressed in the brain are critical for synaptic development and plasticity. Drugs of abuse cause lasting changes in the limbic regions of the brain that process reward, and addiction is viewed as a form of aberrant neuroplasticity. Using next-generation sequencing, we cataloged miRNA expression in the nucleus accumbens and at striatal synapses in control and chronically cocaine-treated mice. We identified cocaine-responsive miRNAs, synaptically enriched and depleted miRNA families, and confirmed cocaine-induced changes in protein expression for several predicted synaptic target genes. The miR-8 family, known for its roles in cancer, is highly enriched and cocaine regulated at striatal synapses, where its members may affect expression of cell adhesion molecules. Synaptically enriched cocaine-regulated miRNAs may contribute to long-lasting drug-induced plasticity through fine-tuning regulatory pathways that modulate the actin cytoskeleton, neurotransmitter metabolism, and peptide hormone processing.


Biological Psychiatry | 2010

Behavioral and morphological responses to cocaine require Kalirin7

Drew D. Kiraly; Xin-Ming Ma; Christopher M. Mazzone; Xiaonan Xin; Richard E. Mains; Betty A. Eipper

BACKGROUND Long-lasting increases in dendritic spine density and gene expression in the nucleus accumbens and in the ambulatory response to cocaine occur following chronic cocaine treatment. Despite numerous reports of these findings, the molecular mechanisms leading to these morphological, biochemical, and behavioral changes remain unclear. METHODS We used mice genetically lacking Kalirin7 (Kal7(KO)), a Rho guanine nucleotide exchange factor that regulates dendritic spine formation and function. Both wild-type (Wt) and Kal7(KO) mice were given high-dose cocaine (20 mg/kg) for 4 or 8 consecutive days. Locomotor sensitization and conditioned place preference elicited by cocaine were evaluated. The nucleus accumbens core was diolistically labeled and spine density and morphology were quantified using confocal microscopy. RESULTS Cocaine increased Kalirin7 messenger RNA and protein expression in the nucleus accumbens of Wt mice. The Kal7(KO) animals showed greater locomotor sensitization to cocaine than Wt mice. In contrast, Kal7(KO) mice exhibited decreased place preference for cocaine, despite displaying a normal place preference for food. While Wt mice showed a robust increase in dendritic spine density after 4 and 8 days of cocaine treatment, dendritic spine density failed to increase in cocaine-exposed Kal7(KO) mice. Wild-type mice treated with cocaine for 8 days exhibited larger dendritic spines than cocaine-treated Kal7(KO) mice. CONCLUSIONS Kalirin7 is an essential determinant of dendritic spine formation following cocaine treatment. The absence of this single isoform of one of the many Rho guanine nucleotide exchange factors expressed in the nucleus accumbens results in enhanced locomotor sensitization and diminished place preference in response to cocaine.


The Journal of Neuroscience | 2011

Kalirin Binds the NR2B Subunit of the NMDA Receptor, Altering Its Synaptic Localization and Function

Drew D. Kiraly; Fouad Lemtiri-Chlieh; Eric S. Levine; Richard E. Mains; Betty A. Eipper

The ability of dendritic spines to change size and shape rapidly is critical in modulating synaptic strength; these morphological changes are dependent upon rearrangements of the actin cytoskeleton. Kalirin-7 (Kal7), a Rho guanine nucleotide exchange factor localized to the postsynaptic density (PSD), modulates dendritic spine morphology in vitro and in vivo. Kal7 activates Rac and interacts with several PSD proteins, including PSD-95, DISC-1, AF-6, and Arf6. Mice genetically lacking Kal7 (Kal7KO) exhibit deficient hippocampal long-term potentiation (LTP) as well as behavioral abnormalities in models of addiction and learning. Purified PSDs from Kal7KO mice contain diminished levels of NR2B, an NMDA receptor subunit that plays a critical role in LTP induction. Here we demonstrate that Kal7KO animals have decreased levels of NR2B-dependent NMDA receptor currents in cortical pyramidal neurons as well as a specific deficit in cell surface expression of NR2B. Additionally, we demonstrate that the genotypic differences in conditioned place preference and passive avoidance learning seen in Kal7KO mice are abrogated when animals are treated with an NR2B-specific antagonist during conditioning. Finally, we identify a stable interaction between the pleckstrin homology domain of Kal7 and the juxtamembrane region of NR2B preceding its cytosolic C-terminal domain. Binding of NR2B to a protein that modulates the actin cytoskeleton is important, as NMDA receptors require actin integrity for synaptic localization and function. These studies demonstrate a novel and functionally important interaction between the NR2B subunit of the NMDA receptor and Kalirin, proteins known to be essential for normal synaptic plasticity.


BMC Neuroscience | 2011

Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity

Fouad Lemtiri-Chlieh; Liangfang Zhao; Drew D. Kiraly; Betty A. Eipper; Richard E. Mains; Eric S. Levine

BackgroundDendritic spines represent the postsynaptic component of the vast majority of excitatory synapses present in the mammalian forebrain. The ability of spines to rapidly alter their shape, size, number and receptor content in response to stimulation is considered to be of paramount importance during the development of synaptic plasticity. Indeed, long-term potentiation (LTP), widely believed to be a cellular correlate of learning and memory, has been repeatedly shown to induce both spine enlargement and the formation of new dendritic spines. In our studies, we focus on Kalirin-7 (Kal7), a Rho GDP/GTP exchange factor (Rho-GEF) localized to the postsynaptic density that plays a crucial role in the development and maintenance of dendritic spines both in vitro and in vivo. Previous studies have shown that mice lacking Kal7 (Kal7KO) have decreased dendritic spine density in the hippocampus as well as focal hippocampal-dependent learning impairments.ResultsWe have performed a detailed electrophysiological characterization of the role of Kal7 in hippocampal synaptic plasticity. We show that loss of Kal7 results in impaired NMDA receptor-dependent LTP and long-term depression, whereas a NMDA receptor-independent form of LTP is shown to be normal in the absence of Kal7.ConclusionsThese results indicate that Kal7 is an essential and selective modulator of NMDA receptor-dependent synaptic plasticity in the hippocampus.


Genes, Brain and Behavior | 2013

Effects of cocaine and withdrawal on the mouse nucleus accumbens transcriptome

Jodi Eipper-Mains; Drew D. Kiraly; Michael O. Duff; Michael Horowitz; C. J. McManus; Betty A. Eipper; Brenton R. Graveley; Richard E. Mains

Genetic association studies, pharmacological investigations and analysis of mice‐lacking individual genes have made it clear that Cocaine administration and Withdrawal have a profound impact on multiple neurotransmitter systems. The GABAergic medium spiny neurons of the nucleus accumbens (NAc) exhibit changes in the expression of genes encoding receptors for glutamate and in the signaling pathways triggered by dopamine binding to G‐protein‐coupled dopamine receptors. Deep sequence analysis provides a sensitive, quantitative and global analysis of the effects of Cocaine on the NAc transcriptome. RNA prepared from the NAc of adult male mice receiving daily injections of Saline or Cocaine, or Cocaine followed by a period of Withdrawal, was used for high‐throughput sequence analysis. Changes were validated by quantitative polymerase chain reaction or Western blot. On the basis of pathway analysis, a preponderance of the genes affected by Cocaine and Withdrawal was involved in the cadherin, heterotrimeric G‐protein and Wnt signaling pathways. Distinct subsets of cadherins and protocadherins exhibited a sustained increase or decrease in expression. Sustained down‐regulation of several heterotrimeric G‐protein β‐ and γ‐subunits was observed. In addition to altered expression of receptors for small molecule neurotransmitters, neuropeptides and endocannabinoids, changes in the expression of plasma membrane transporters and vesicular neurotransmitter transporters were also observed. The effects of chronic Cocaine and Withdrawal on the expression of genes essential to cholinergic, glutamatergic, GABAergic, peptidergic and endocannabinoid signaling are as profound as their effects on dopaminergic transmission. Simultaneous targeting of multiple Withdrawal‐specific changes in gene expression may facilitate development of new therapeutic approaches that are better able to prevent relapse.


Journal of Proteome Research | 2011

Identification of kalirin-7 as a potential post-synaptic density signaling hub.

Drew D. Kiraly; Kathy Stone; Chris M. Colangelo; Tom Abbott; Yanping Wang; Richard E. Mains; Betty A. Eipper

Kalirin-7 (Kal7), a multifunctional Rho GDP/GTP exchange factor (GEF) for Rac1 and RhoG, is embedded in the postsynaptic density at excitatory synapses, where it participates in the formation and maintenance of dendritic spines. Kal7 has been implicated in long-term potentiation, fear memories, and addiction-like behaviors. Using liquid chromatography and tandem mass spectroscopy, we identified sites phosphorylated by six PSD-localized kinases implicated in synaptic plasticity and behavior, sites phosphorylated when myc-Kal7 was expressed in non-neuronal cells and sites phosphorylated in mouse brain Kal7. A site in the Sec14p domain phosphorylated by calcium/calmodulin dependent protein kinase II, protein kinase A and protein kinase C, was phosphorylated in mouse brain but not in non-neuronal cells. Phosphorylation in the spectrin-like repeat region was more extensive in mouse brain than in non-neuronal cells, with a total of 20 sites identified. Sites in the pleckstrin homology domain and in the linker region connecting the GEF domain to the PDZ binding motif were heavily phosphorylated in both non-neuronal cells and in mouse brain and affected GEF activity. We postulate that the kinase convergence and divergence observed in Kal7 identify it as a key player in integration of the multiple inputs that regulate synaptic structure and function.


Molecular Pharmacology | 2013

Constitutive knockout of kalirin-7 leads to increased rates of cocaine self-administration.

Drew D. Kiraly; Natali E. Nemirovsky; Taylor P. LaRese; Seven E. Tomek; Stephanie L. Yahn; M. Foster Olive; Betty A. Eipper; Richard E. Mains

Kalirin-7 (Kal7) is a Rho-guanine nucleotide exchange factor that is localized in neuronal postsynaptic densities. Kal7 interacts with the NR2B subunit of the NMDA receptor and regulates aspects of dendritic spine dynamics both in vitro and in vivo. Chronic treatment with cocaine increases dendritic spine density in the nucleus accumbens (NAc) of rodents and primates. Kal7 mRNA and protein are upregulated in the NAc following cocaine treatment, and the presence of Kal7 is necessary for the normal proliferation of dendritic spines following cocaine use. Mice that constitutively lack Kal7 [Kalirin-7 knockout mice (Kal7KO)] demonstrate increased locomotor sensitization to cocaine and a decreased place preference for cocaine. Here, using an intravenous cocaine self-administration paradigm, Kal7KO mice exhibit increased administration of cocaine at lower doses as compared with wild-type (Wt) mice. Analyses of mRNA transcript levels from the NAc of mice that self-administered saline or cocaine reveal that larger splice variants of the Kalrn gene are increased by cocaine more dramatically in Kal7KO mice than in Wt mice. Additionally, transcripts encoding the NR2B subunit of the NMDA receptor increased in Wt mice that self-administered cocaine but were unchanged in similarly experienced Kal7KO mice. These findings suggest that Kal7 participates in the reinforcing effects of cocaine, and that Kal7 and cocaine interact to alter the expression of genes related to critical glutamatergic signaling pathways in the NAc.


Molecular Pharmacology | 2012

Analysis of Kalirin-7 Knockout Mice Reveals Different Effects in Female Mice

Christopher M. Mazzone; Taylor P. LaRese; Drew D. Kiraly; Betty A. Eipper; Richard E. Mains

Estradiol treatment of ovariectomized rodents is known to affect the morphology of dendritic spines and produce behavioral and cognitive effects. Kalirin-7 (Kal7), a postsynaptic density (PSD)-localized Rho-guanine nucleotide exchange factor, is important for dendritic spine formation and stability. Male Kal7 knockout [Kal7(KO)] mice exhibit a number of abnormal behavioral and biochemical phenotypes. Given that chronic 17β-estradiol (E2) replacement of ovariectomized rats enhanced Kal7 expression in the hippocampus and primary hippocampal cultures, we assessed the behavioral and biochemical effects of chronic E2 treatment of ovariectomized female wild-type and Kal7(KO) mice. Both intact and ovariectomized Kal7(KO) female mice exhibited decreased anxiety-like behavior compared with the corresponding wild type in the elevated zero maze and were unaffected by E2 treatment. Chronic E2 decreased locomotor activity in the open field and enhanced performance in a passive-avoidance fear conditioning task, which were both unaffected by genotype. Kal7(KO) female mice engaged in significantly more object exploration, both familiar and novel, than did wild-type females. E2 enhanced the acute locomotor response to cocaine, with no significant effect of genotype. Similar to Kal7(KO) males, Kal7(KO) females had decreased levels of N-methyl-d-aspartate receptor 2B in hippocampal PSD fractions with no effect of E2 treatment. The differing behavioral effects of Kal7 ablation in female and male mice may offer insight into the molecular underpinnings of these differences.


Proteome | 2018

Granulocyte-Colony-Stimulating Factor Alters the Proteomic Landscape of the Ventral Tegmental Area

Nicholas L. Mervosh; Rashaun S. Wilson; Navin Rauniyar; Rebecca S. Hofford; Munir Gunes Kutlu; Erin S. Calipari; TuKiet T. Lam; Drew D. Kiraly

Cocaine addiction is characterized by aberrant plasticity of the mesolimbic dopamine circuit, leading to dysregulation of motivation to seek and take drug. Despite the significant toll that cocaine use disorder exacts on society, there are currently no available pharmacotherapies. We have recently identified granulocyte-colony stimulating factor (G-CSF) as a soluble cytokine that alters the behavioral response to cocaine and which increases dopamine release from the ventral tegmental area (VTA). Despite these known effects on behavior and neurophysiology, the molecular mechanisms by which G-CSF affects brain function are unclear. In this study mice were treated with repeated injections of G-CSF, cocaine or a combination and changes in protein expression in the VTA were examined using an unbiased proteomics approach. Repeated G-CSF treatment resulted in alterations in multiple signaling pathways related to synaptic plasticity and neuronal morphology. While the treatment groups had marked overlap in their effect, injections of cocaine and the combination of cocaine and G-CSF lead to distinct patterns of significantly regulated proteins. These experiments provide valuable information as to the molecular pathways that G-CSF activates in an important limbic brain region and will help to guide further characterization of G-CSF function and evaluation as a possible translational target.

Collaboration


Dive into the Drew D. Kiraly's collaboration.

Top Co-Authors

Avatar

Betty A. Eipper

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Richard E. Mains

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Eric S. Levine

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Jodi Eipper-Mains

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Taylor P. LaRese

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Xin-Ming Ma

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Fouad Lemtiri-Chlieh

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Brenton R. Graveley

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Christopher M. Mazzone

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge