Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard E. Mains is active.

Publication


Featured researches published by Richard E. Mains.


Neuron | 2003

Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin

Peter Penzes; Alexander Beeser; Jonathan Chernoff; Martin R. Schiller; Betty A. Eipper; Richard E. Mains; Richard L. Huganir

The morphogenesis of dendritic spines, the major sites of excitatory synaptic transmission in the brain, is important in synaptic development and plasticity. We have identified an ephrinB-EphB receptor trans-synaptic signaling pathway which regulates the morphogenesis and maturation of dendritic spines in hippocampal neurons. Activation of the EphB receptor induces translocation of the Rho-GEF kalirin to synapses and activation of Rac1 and its effector PAK. Overexpression of dominant-negative EphB receptor, catalytically inactive kalirin, or dominant-negative Rac1, or inhibition of PAK eliminates ephrin-induced spine development. This novel signal transduction pathway may be critical for the regulation of the actin cytoskeleton controlling spine morphogenesis during development and plasticity.


Neuron | 2001

The Neuronal Rho-GEF Kalirin-7 Interacts with PDZ Domain–Containing Proteins and Regulates Dendritic Morphogenesis

Peter Penzes; Richard C. Johnson; Rita Sattler; Xiaoqun Zhang; Richard L. Huganir; Vikram Kambampati; Richard E. Mains; Betty A. Eipper

Spine function requires precise control of the actin cytoskeleton. Kalirin-7, a GDP/GTP exchange factor for Rac1, interacts with PDZ proteins such as PSD-95, colocalizing with PSD-95 at synapses of cultured hippocampal neurons. PSD-95 and Kalirin-7 interact in vivo and in heterologous expression systems. In primary cortical neurons, transfected Kalirin-7 is targeted to spines and increases the number and size of spine-like structures. A Kalirin-7 mutant unable to interact with PDZ proteins remains in the cell soma, inducing local formation of aberrant filopodial neurites. Kalirin-7 with an inactivated GEF domain reduces the number of spines below control levels. These results provide evidence that PDZ proteins target Kalirin-7 to the PSD, where it regulates dendritic morphogenesis through Rac1 signaling to the actin cytoskeleton.


Cellular and Molecular Life Sciences | 2000

New insights into copper monooxygenases and peptide amidation: structure, mechanism and function

S. T. Prigge; Richard E. Mains; Betty A. Eipper; L. M. Amzel

Abstract. Many bioactive peptides must be amidated at their carboxy terminus to exhibit full activity. Surprisingly, the amides are not generated by a transamidation reaction. Instead, the hormones are synthesized from glycine-extended intermediates that are transformed into active amidated hormones by oxidative cleavage of the glycine N-Cα bond. In higher organisms, this reaction is catalyzed by a single bifunctional enzyme, peptidylglycine α-amidating monooxygenase (PAM). The PAM gene encodes one polypeptide with two enzymes that catalyze the two sequential reactions required for amidation. Peptidylglycine α-hydroxylating monooxygenase (PHM; EC 1.14.17.3) catalyzes the stereospecific hydroxylation of the glycine α-carbon of all the peptidylglycine substrates. The second enzyme, peptidyl-α-hydroxyglycine α-amidating lyase (PAL; EC 4.3.2.5), generates α-amidated peptide product and glyoxylate. PHM contains two redox-active copper atoms that, after reduction by ascorbate, catalyze the reduction of molecular oxygen for the hydroxylation of glycine-extended substrates. The structure of the catalytic core of rat PHM at atomic resolution provides a framework for understanding the broad substrate specificity of PHM, identifying residues critical for PHM activity, and proposing mechanisms for the chemical and electron-transfer steps in catalysis. Since PHM is homologous in sequence and mechanism to dopamine β-monooxygenase (DBM; EC 1.14.17.1), the enzyme that converts dopamine to norepinephrine during catecholamine biosynthesis, these structural and mechanistic insights are extended to DBM.


Science | 2004

Dioxygen Binds End-On to Mononuclear Copper in a Precatalytic Enzyme Complex

Sean T. Prigge; Betty A. Eipper; Richard E. Mains; L. Mario Amzel

Copper active sites play a major role in enzymatic activation of dioxygen. We trapped the copper-dioxygen complex in the enzyme peptidylglycine-alphahydroxylating monooxygenase (PHM) by freezing protein crystals that had been soaked with a slow substrate and ascorbate in the presence of oxygen. The x-ray crystal structure of this precatalytic complex, determined to 1.85-angstrom resolution, shows that oxygen binds to one of the coppers in the enzyme with an end-on geometry. Given this structure, it is likely that dioxygen is directly involved in the electron transfer and hydrogen abstraction steps of the PHM reaction. These insights may apply to other copper oxygen-activating enzymes, such as dopamine beta-monooxygenase, and to the design of biomimetic complexes.


Trends in Neurosciences | 1983

Strategies for the biosynthesis of bioactive peptides

Richard E. Mains; Betty A. Eipper; C C Glembotski; Robert M. Dores

Abstract Neuropeptides and small peptide hormones are usually synthesized as part of large, inactive precursor proteins. Although the sequences of many of these pro-molecules are now known, much remains to be learned about the post-translational processing events that must occur to generate the bioactive products.


The Journal of Neuroscience | 2008

Kalirin 7 is required for synaptic structure and function

Xin-Ming Ma; Drew D. Kiraly; Eric D. Gaier; Yanping Wang; Eunji Kim; Eric S. Levine; Betty A. Eipper; Richard E. Mains

Rho GTPases activated by GDP/GTP exchange factors (GEFs) play key roles in the developing and adult nervous system. Kalirin-7 (Kal7), the predominant adult splice form of the multifunctional Kalirin RhoGEF, includes a PDZ [postsynaptic density-95 (PSD-95)/Discs large (Dlg)/zona occludens-1 (ZO-1)] binding domain and localizes to the postsynaptic side of excitatory synapses. In vitro studies demonstrated that overexpression of Kal7 increased dendritic spine density, whereas reduced expression of endogenous Kal7 decreased spine density. To evaluate the role of Kal7 in vivo, mice lacking the terminal exon unique to Kal7 were created. Mice lacking both copies of the Kal7 exon (Kal7KO) grew and reproduced normally. Golgi impregnation and electron microscopy revealed decreased hippocampal spine density in Kal7KO mice. Behaviorally, Kal7KO mice showed decreased anxiety-like behavior in the elevated zero maze and impaired acquisition of a passive avoidance task, but normal behavior in open field, object recognition, and radial arm maze tasks. Kal7KO mice were deficient in hippocampal long-term potentiation. Western blot analysis confirmed the absence of Kal7 and revealed compensatory increases in larger Kalirin isoforms. PSDs purified from the cortices of Kal7KO mice showed a deficit in Cdk5, a kinase known to phosphorylate Kal7 and play an essential role in synaptic function. The early stages of excitatory synaptic development proceeded normally in cortical neurons prepared from Kal7KO mice, with decreased excitatory synapses apparent only after 21 d in vitro. Expression of exogenous Kal7 in Kal7KO neurons rescued this deficit. Kal7 plays an essential role in synaptic structure and function, affecting a subset of cognitive processes.


Nature Structural & Molecular Biology | 1999

Substrate-mediated electron transfer in peptidylglycine alpha-hydroxylating monooxygenase.

Sean T. Prigge; A.S Kolhekar; Betty A. Eipper; Richard E. Mains; L.M. Amzel

Peptide amidation is a ubiquitous posttranslational modification of bioactive peptides. Peptidylglycine α-hydroxylating monooxygenase (PHM; EC 1.14.17.3), the enzymne that catalyzes the first step of this reaction, is composed of two domains, each of which binds one copper atom. The coppers are held 11 Å apart on either side of a solvent-filled interdomain cleft, and the PHM reaction requires electron transfer between these sites. A plausible mechanism for electron transfer might involve interdomain motion to decrease the distance between the copper atoms. Our experiments show that PHM catalytic core (PHMcc) is enzymatically active in the crystal phase, where interdomain motion is not possible. Instead, structures of two states relevant to catalysis indicate that water, substrate and active site residues may provide an electron transfer pathway that exists only during the PHM catalytic cycle.


Journal of Biological Chemistry | 1999

Kalirin Inhibition of Inducible Nitric-oxide Synthase

Edward Ratovitski; M. Rashidul Alam; Richard A. Quick; Audrey McMillan; Clare Bao; Chaim Kozlovsky; Tracey Hand; Richard C. Johnson; Richard E. Mains; Betty A. Eipper; Charles J. Lowenstein

Nitric oxide (NO) acts as a neurotransmitter. However, excess NO produced from neuronal NO synthase (nNOS) or inducible NOS (iNOS) during inflammation of the central nervous system can be neurotoxic, disrupting neurotransmitter and hormone production and killing neurons. A screen of a hippocampal cDNA library showed that a unique region of the iNOS protein interacts with Kalirin, previously identified as an interactor with a secretory granule peptide biosynthetic enzyme. Kalirin associates with iNOS in vitroand in vivo and inhibits iNOS activity by preventing the formation of iNOS homodimers. Expression of exogenous Kalirin in pituitary cells dramatically reduces iNOS inhibition of ACTH secretion. Thus Kalirin may play a neuroprotective role during inflammation of the central nervous system by inhibiting iNOS activity.


Journal of Clinical Investigation | 1996

Chromogranin A processing and secretion: specific role of endogenous and exogenous prohormone convertases in the regulated secretory pathway.

N L Eskeland; An Zhou; T Q Dinh; Hongjiang Wu; Robert J. Parmer; Richard E. Mains; Daniel T. O'Connor

Chromogranins A and B and secretogranin II are a family of acidic proteins found in neuroendocrine secretory vesicles; these proteins contain multiple potential cleavage sites for proteolytic processing by the mammalian subtilisin-like serine endoproteases PC1 and PC2 (prohormone convertases 1 and 2), and furin. We explored the role of these endoproteases in chromogranin processing in AtT-20 mouse pituitary corticotropes. Expression of inducible antisense PC1 mRNA virtually abolished PC1 immunoreactivity on immunoblots. Chromogranin A immunoblots revealed chromogranin A processing, from both the NH2 and COOH termini, in both wild-type AtT-20 and AtT-20 antisense PC1 cells. After antisense PC1 induction, an approximately 66-kD chromogranin A NH2-terminal fragment as well as the parent chromogranin A molecule accumulated, while an approximately 50 kD NH2-terminal and an approximately 30 kD COOH-terminal fragment declined in abundance. Chromogranin B and secretogranin II immunoblots showed no change after PC1 reduction. [35S]Methionine/cysteine pulse-chase metabolic labeling in AtT-20 antisense PC1 and antisense furin cells revealed reciprocal changes in secreted chromogranin A COOH-terminal fragments (increased approximately 82 kD and decreased approximately 74 kD forms, as compared with wild-type AtT-20 cells) indicating decreased cleavage, while AtT-20 cells overexpressing PC2 showed increased processing to and secretion of approximately 71 and approximately 27 kD NH2-terminal chromogranin A fragments. Antisense PC1 specifically abolished regulated secretion of both chromogranin A and beta-endorphin in response to the usual secretagogue, corticotropin-releasing hormone. Moreover, immunocytochemistry demonstrated a relative decrease of chromogranin A in processes (where regulated secretory vesicles accumulate) of AtT-20 cells overexpressing either PC1 or PC2. These results demonstrate that chromogranin A is a substrate for the endogenous endoproteases PC1 and furin in vivo, and that such processing influences its trafficking into the regulated secretory pathway; furthermore, lack of change in chromogranin B and secretogranin II cleavage after diminution of PCl suggests that the action of PC1 on chromogranin A may be specific within the chromogranin/secretogranin protein family.


RNA | 2011

microRNA-Seq reveals cocaine-regulated expression of striatal microRNAs.

Jodi Eipper-Mains; Drew D. Kiraly; Dasaradhi Palakodeti; Richard E. Mains; Betty A. Eipper; Brenton R. Graveley

MicroRNAs (miRNAs) are small RNAs that modulate gene expression by binding target mRNAs. The hundreds of miRNAs expressed in the brain are critical for synaptic development and plasticity. Drugs of abuse cause lasting changes in the limbic regions of the brain that process reward, and addiction is viewed as a form of aberrant neuroplasticity. Using next-generation sequencing, we cataloged miRNA expression in the nucleus accumbens and at striatal synapses in control and chronically cocaine-treated mice. We identified cocaine-responsive miRNAs, synaptically enriched and depleted miRNA families, and confirmed cocaine-induced changes in protein expression for several predicted synaptic target genes. The miR-8 family, known for its roles in cancer, is highly enriched and cocaine regulated at striatal synapses, where its members may affect expression of cell adhesion molecules. Synaptically enriched cocaine-regulated miRNAs may contribute to long-lasting drug-induced plasticity through fine-tuning regulatory pathways that modulate the actin cytoskeleton, neurotransmitter metabolism, and peptide hormone processing.

Collaboration


Dive into the Richard E. Mains's collaboration.

Top Co-Authors

Avatar

Betty A. Eipper

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Richard C. Johnson

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Xin-Ming Ma

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Drew D. Kiraly

University of Connecticut Health Center

View shared research outputs
Top Co-Authors

Avatar

Sharon L. Milgram

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nils Bäck

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar

Brian T. Bloomquist

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge