Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Duane H. Hamilton is active.

Publication


Featured researches published by Duane H. Hamilton.


Cancer Research | 2011

IL-8 Signaling Plays a Critical Role in the Epithelial–Mesenchymal Transition of Human Carcinoma Cells

Romaine I. Fernando; Marianne D. Castillo; Mary T. Litzinger; Duane H. Hamilton; Claudia Palena

The switch of tumor cells from an epithelial to a mesenchymal-like phenotype [designated as epithelial-to-mesenchymal transition (EMT)] is known to induce tumor cell motility and invasiveness, therefore promoting metastasis of solid carcinomas. Although multiple studies have focused on elucidating the signaling events that initiate this phenotypic switch, there has been so far no characterization of the pattern of soluble mediators released by tumor cells undergoing EMT, and the potential impact that this phenotypic switch could have on the remodeling of the tumor microenvironment. Here we show that induction of EMT in human carcinoma cells via overexpression of the transcription factor Brachyury is associated with enhanced secretion of multiple cytokines, chemokines, and angiogenic factors and, in particular, with the induction of the IL-8/IL-8R axis. Our results also indicate the essential role of interleukin 8 (IL-8) signaling for the acquisition and/or maintenance of the mesenchymal and invasive features of Brachyury-overexpressing tumor cells and show that IL-8 secreted by tumor cells undergoing EMT could potentiate tumor progression by inducing adjacent epithelial tumor cells into EMT. Altogether, our results emphasize the potential role of EMT in the modulation of the tumor microenvironment via secretion of multiple soluble mediators and suggest that IL-8 signaling blockade may provide a means of targeting mesenchymal-like, invasive tumor cells.


Journal of Clinical Investigation | 2010

The T-box transcription factor Brachyury promotes epithelial-mesenchymal transition in human tumor cells

Romaine I. Fernando; Mary T. Litzinger; Paola Trono; Duane H. Hamilton; Jeffrey Schlom; Claudia Palena

Metastatic disease is responsible for the majority of human cancer deaths. Understanding the molecular mechanisms of metastasis is a major step in designing effective cancer therapeutics. Here we show that the T-box transcription factor Brachyury induces in tumor cells epithelial-mesenchymal transition (EMT), an important step in the progression of primary tumors toward metastasis. Overexpression of Brachyury in human carcinoma cells induced changes characteristic of EMT, including upregulation of mesenchymal markers, downregulation of epithelial markers, and an increase in cell migration and invasion. Brachyury overexpression also repressed E-cadherin transcription, an effect partially mediated by Slug. Conversely, inhibition of Brachyury resulted in downregulation of mesenchymal markers and loss of cell migration and invasion and diminished the ability of human tumor cells to form lung metastases in a xenograft model. Furthermore, we found Brachyury to be overexpressed in various human tumor tissues and tumor cell lines compared with normal tissues. We also determined that the percentage of human lung tumor tissues positive for Brachyury expression increased with the stage of the tumor, indicating a potential association between Brachyury and tumor progression. The selective expression of Brachyury in tumor cells and its role in EMT and cancer progression suggest that Brachyury may be an attractive target for antitumor therapies.


Future Oncology | 2012

Influence of IL-8 on the epithelial–mesenchymal transition and the tumor microenvironment

Claudia Palena; Duane H. Hamilton; Romaine I. Fernando

The phenomenon of epithelial-mesenchymal transition (EMT) has gained attention in the field of cancer biology for its potential contribution to the progression of carcinomas. Tumor EMT is a phenotypic switch that promotes the acquisition of a fibroblastoid-like morphology by epithelial tumor cells, resulting in enhanced tumor cell motility and invasiveness, increased metastatic propensity and resistance to chemotherapy, radiation and certain small-molecule-targeted therapies. Tumor cells undergoing EMT are also known to increase the secretion of specific factors, including cytokines, chemokines and growth factors, which could play an important role in tumor progression. This review summarizes the current knowledge on the secretory properties of epithelial tumor cells that have undergone an EMT, with an emphasis on the potential role of the IL-8-IL-8 receptor axis on the induction and/or maintenance of tumor EMT and its ability to remodel the tumor microenvironment.


Journal of the National Cancer Institute | 2014

Overexpression of the EMT driver brachyury in breast carcinomas: association with poor prognosis.

Claudia Palena; Mario Roselli; Mary T. Litzinger; Patrizia Ferroni; Leopoldo Costarelli; Antonella Spila; Francesco Cavaliere; Bruce Huang; Romaine I. Fernando; Duane H. Hamilton; Caroline Jochems; Kwong Y. Tsang; Qing Cheng; H. Kim Lyerly; Jeffrey Schlom; Fiorella Guadagni

BACKGROUND The epithelial-mesenchymal transition (EMT) has been implicated as an important process in tumor cell invasion, metastasis, and drug resistance. The transcription factor brachyury has recently been described as a driver of EMT of human carcinoma cells. METHODS Brachyury mRNA and protein expression was analyzed in human breast carcinomas and benign tissues. The role of brachyury in breast tumor prognosis and drug resistance and the ability of brachyury-specific T cells to lyse human breast carcinoma cells were also evaluated. Kaplan-Meier analyses were used to evaluate the association between brachyury expression and survival. All statistical tests were two-sided. RESULTS The level of brachyury expression in breast cancer cells was positively associated with their ability to invade the extracellular matrix, efficiently form mammospheres in vitro, and resist the cytotoxic effect of docetaxel. A comparison of survival among breast cancer patients treated with tamoxifen in the adjuvant setting who had tumors with high vs low brachyury mRNA expression demonstrated that high expression of brachyury is associated as an independent variable with higher risk of recurrence (hazard ratio [HR] = 7.5; 95% confidence interval [CI] = 2.4 to 23.5; P = 5.14×10(-4)) and distant metastasis (HR = 15.2; 95% CI = 3.5 to 66.3; P = 3.01×10(-4)). We also demonstrated that brachyury-specific T cells can lyse human breast carcinoma cells. CONCLUSIONS The studies reported here provide the rationale for the use of a vaccine targeting brachyury for the therapy of human breast cancer, either as a monotherapy or in combination therapies.


Vaccine | 2016

The IL-8/IL-8R Axis: A Double Agent in Tumor Immune Resistance

Justin M. David; Charli Dominguez; Duane H. Hamilton; Claudia Palena

Interleukin-8 (IL-8, CXCL8) is a pro-inflammatory chemokine produced by various cell types to recruit leukocytes to sites of infection or tissue injury. Acquisition of IL-8 and/or its receptors CXCR1 and CXCR2 are known to be a relatively common occurrence during tumor progression. Emerging research now indicates that paracrine signaling by tumor-derived IL-8 promotes the trafficking of neutrophils and myeloid-derived suppressor cells (MDSCs) into the tumor microenvironment, which have the ability to dampen anti-tumor immune responses. Furthermore, recent studies have also shown that IL-8 produced by the tumor mass can induce tumor cells to undergo the transdifferentiation process epithelial-to-mesenchymal transition (EMT) in which tumor cells shed their epithelial characteristics and acquire mesenchymal characteristics. EMT can increase metastatic dissemination, stemness, and intrinsic resistance, including to killing by cytotoxic immune cells. This review highlights the dual potential roles that the inflammatory cytokine IL-8 plays in promoting tumor resistance by enhancing the immunosuppressive microenvironment and activating EMT, and then discusses the potential for targeting the IL-8/IL-8 receptor axis to combat these various resistance mechanisms.


Seminars in Oncology | 2012

Cancer Vaccines Targeting the Epithelial-Mesenchymal Transition: Tissue Distribution of Brachyury and Other Drivers of the Mesenchymal-Like Phenotype of Carcinomas

Duane H. Hamilton; Mary T. Litzinger; Romaine I. Fernando; Bruce Huang; Claudia Palena

The epithelial-mesenchymal transition (EMT) is thought to be a critical step along the metastasis of carcinomas. In addition to gaining motility and invasiveness, tumor cells that undergo EMT also acquire increased resistance to many traditional cancer treatment modalities, including chemotherapy and radiation. As such, EMT has become an attractive, potentially targetable process for therapeutic interventions against tumor metastasis. The process of EMT is driven by a group of transcription factors designated as EMT transcription factors, such as Snail, Slug, Twist, and the recently identified T-box family member, Brachyury. In an attempt to determine which of these drivers of EMT is more amenable to targeted therapies and, in particular, T-cell-mediated immunotherapeutic approaches, we have examined their relative expression levels in a range of human and murine normal tissues, cancer cell lines, and human tumor biopsies. Our results demonstrated that Brachyury is a molecule with a highly restricted human tumor expression pattern. We also demonstrated that Brachyury is immunogenic and that Brachyury-specific CD8(+) T cells expanded in vitro are able to lyse Brachyury-positive tumor cells. We thus propose Brachyury as an attractive target for vaccination strategies designed to specifically target tumor cells undergoing EMT.


Cancer Research | 2014

WEE1 Inhibition Alleviates Resistance to Immune Attack of Tumor Cells Undergoing Epithelial–Mesenchymal Transition

Duane H. Hamilton; Bruce Huang; Romaine I. Fernando; Kwong-Yok Tsang; Claudia Palena

Aberrant expression of the T-box transcription factor brachyury in human carcinomas drives the phenomenon of epithelial-mesenchymal transition (EMT), a phenotypic modulation that facilitates tumor dissemination and resistance to conventional therapies, including chemotherapy and radiotherapy. By generating isogenic cancer cell lines with various levels of brachyury expression, we demonstrate that high levels of brachyury also significantly reduce the susceptibility of cancer cells to lysis by both antigen-specific T cells and natural killer cells. Our results indicated that resistance of brachyury-high tumor cells to immune-mediated attack was due to inefficient caspase-dependent apoptosis, manifested as inefficient nuclear lamin degradation in the presence of activated effector caspases. We correlated this phenomenon with loss of cell-cycle-dependent kinase 1 (CDK1), which mediates lamin phosphorylation. In support of a causal connection, pretreatment of tumor cells with a specific inhibitor of WEE1, a negative regulator kinase of CDK1, could counter the defective apoptosis of tumor cells expressing high levels of brachyury. Thus, our findings suggested that reconstituting CDK1 activity to threshold levels may be sufficient to restore immunosurveillance of mesenchymal-like cancer cells that have escaped previous immune detection or eradication.


Molecular Cancer Therapeutics | 2013

An autocrine loop between TGF-β1 and the transcription factor Brachyury controls the transition of human carcinoma cells into a mesenchymal phenotype

Cecilia Larocca; Joseph R. Cohen; Romaine I. Fernando; Bruce Huang; Duane H. Hamilton; Claudia Palena

The epithelial–mesenchymal transition (EMT) is a process associated with the metastasis of solid tumors as well as with the acquisition of resistance to standard anticancer modalities. A major initiator of EMT in carcinoma cells is TGF-β, which has been shown to induce the expression of several transcription factors ultimately responsible for initiating and maintaining the EMT program. We have previously identified Brachyury, a T-box transcription factor, as an inducer of mesenchymal features in human carcinoma cells. In this study, a potential link between Brachyury and TGF-β signaling has been investigated. The results show for the first time that Brachyury expression is enhanced during TGF-β1–induced EMT in various human cancer cell lines, and that a positive feedback loop is established between Brachyury and TGF-β1 in mesenchymal-like tumor cells. In this context, Brachyury overexpression is shown to promote upregulation of TGF-β1 at the mRNA and protein levels, an effect mediated by activation of the TGF-β1 promoter in the presence of high levels of Brachyury. Furthermore, inhibition of TGF-β1 signaling by a small-molecule inhibitor of TGF-β receptor type I decreases Brachyury expression, induces a mesenchymal-to-epithelial transition, and renders cancer cells more susceptible to chemotherapy. This study thus has implications for the future development of clinical trials using TGF-β inhibitors in combination with other anticancer agents. Mol Cancer Ther; 12(9); 1805–15. ©2013 AACR.


Experimental Biology and Medicine | 2011

Strategies to target molecules that control the acquisition of a mesenchymal-like phenotype by carcinoma cells.

Claudia Palena; Romaine I. Fernando; Mary T. Litzinger; Duane H. Hamilton; Bruce Huang; Jeffrey Schlom

The switch of carcinoma cells from an epithelial to a mesenchymal-like phenotype, via a process designated ‘epithelial-to-mesenchymal transition (EMT),’ has been recognized as a relevant step in the metastasis of solid tumors. Additionally, this phenotypic switch of carcinoma cells has been associated with the acquisition of tumor resistance mechanisms that reduce the antitumor effects of radiation, chemotherapy and some small-molecule-targeted therapies. As multiple signaling pathways and transcriptional regulators that play a role in this phenotypic switch are being identified, novel strategies can be designed to specifically target tumor cells with this metastatic and resistant phenotype. In particular, this review focuses on the potential use of cancer vaccine strategies to target tumor cells that exhibit a mesenchymal-like phenotype, with an emphasis on the characterization of a novel tumor antigen, Brachyury, which we have identified as a critical regulator of EMT in human cancer cells.


OncoImmunology | 2016

MUC1 upregulation promotes immune resistance in tumor cells undergoing brachyury-mediated epithelial-mesenchymal transition

Justin M. David; Duane H. Hamilton; Claudia Palena

ABSTRACT Epithelial-mesenchymal transition (EMT) is a molecular and cellular program in which epithelial cells lose their well-differentiated phenotype and adopt mesenchymal characteristics. This process, which occurs naturally during embryogenesis, has also been shown to be associated with cancer progression and with tumor recurrence following conventional therapies. Brachyury is a transcription factor that mediates EMT during development, and is aberrantly expressed in various human cancers where it promotes tumor cell EMT, metastatic dissemination, and resistance to conventional therapies. We have recently shown that very high expression of brachyury can protect tumor cells against immune cell-mediated cytotoxicity. In seeking to elucidate mechanisms of immunotherapy resistance, we have discovered a novel positive association between brachyury and mucin-1 (MUC1). MUC1 is overexpressed in the majority of carcinomas, and it has been shown to mediate oncogenic signaling and confer resistance to genotoxic agents. We found that MUC1 is concomitantly upregulated in tumor cell lines that highly express brachyury due to an enhancement of MUC1 mRNA stability. Analysis of patient lung tumor tissues also identified a positive association between these two proteins in the majority of samples. Inhibition of MUC1 by siRNA-based gene silencing markedly enhanced the susceptibility of brachyury-expressing cancer cells to killing by tumor necrosis-related apoptosis-inducing ligand (TRAIL) and to perforin/granzyme-dependent lysis by immune cytotoxic cells. These studies confirm a protective role for MUC1 in brachyury-expressing cancer cells, and suggest that inhibition of MUC1 can restore the susceptibility of mesenchymal-like cancer cells to immune attack.

Collaboration


Dive into the Duane H. Hamilton's collaboration.

Top Co-Authors

Avatar

Claudia Palena

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey Schlom

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bruce Huang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Justin M. David

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mary T. Litzinger

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Charli Dominguez

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kwong-Yok Tsang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James W. Hodge

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Fiorella Guadagni

Università telematica San Raffaele

View shared research outputs
Researchain Logo
Decentralizing Knowledge