Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James W. Hodge is active.

Publication


Featured researches published by James W. Hodge.


Journal of Experimental Medicine | 2006

Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy.

Eric Reits; James W. Hodge; Carla Herberts; Tom A. Groothuis; Mala Chakraborty; Elizabeth K. Wansley; Kevin Camphausen; Rosalie M. Luiten; Arnold H. de Ru; Joost Neijssen; Alexander Griekspoor; Elly Mesman; Frank A. W. Verreck; Hergen Spits; Jeffrey Schlom; Peter A. van Veelen; Jacques Neefjes

Radiotherapy is one of the most successful cancer therapies. Here the effect of irradiation on antigen presentation by MHC class I molecules was studied. Cell surface expression of MHC class I molecules was increased for many days in a radiation dose-dependent manner as a consequence of three responses. Initially, enhanced degradation of existing proteins occurred which resulted in an increased intracellular peptide pool. Subsequently, enhanced translation due to activation of the mammalian target of rapamycin pathway resulted in increased peptide production, antigen presentation, as well as cytotoxic T lymphocyte recognition of irradiated cells. In addition, novel proteins were made in response to γ-irradiation, resulting in new peptides presented by MHC class I molecules, which were recognized by cytotoxic T cells. We show that immunotherapy is successful in eradicating a murine colon adenocarcinoma only when preceded by radiotherapy of the tumor tissue. Our findings indicate that directed radiotherapy can improve the efficacy of tumor immunotherapy.


Cancer Research | 2004

External Beam Radiation of Tumors Alters Phenotype of Tumor Cells to Render Them Susceptible to Vaccine-Mediated T-Cell Killing

Mala Chakraborty; Scott I. Abrams; C. Norman Coleman; Kevin Camphausen; Jeffrey Schlom; James W. Hodge

Local radiation is an established therapy for human tumors. Radiation also has been shown to alter the phenotype of target tissue, including gene products that may make tumor cells more susceptible to T-cell-mediated immune attack. We demonstrate a biological synergy between local radiation of tumor and active vaccine therapy. The model used consisted of mice transgenic for human carcinoembryonic antigen (CEA) and a murine carcinoma cell line transfected with CEA. The vaccine regimen consisted of a prime and boost strategy using vaccinia and avipox recombinants expressing CEA and three T-cell costimulatory molecules. One dose of 8-Gy radiation to tumor induced up-regulation of the death receptor Fas in situ for up to 11 days. However, neither radiation at this dose nor vaccine therapy was capable of inhibiting growth of 8-day established tumor. When vaccine therapy and local radiation of tumor were used in combination, dramatic and significant cures were achieved. This was mediated by the engagement of the Fas/Fas ligand pathway because Ag-bearing tumor cells expressing dominant-negative Fas were not susceptible to this combination therapy. Following the combination of vaccine and local radiation, tumors demonstrated a massive infiltration of T cells not seen with either modality alone. Mice cured of tumors demonstrated CD4+ and CD8+ T-cell responses specific for CEA but also revealed the induction of high levels of T-cell responses to two other antigens (gp70 and p53) overexpressed in tumor, indicating the presence of a consequential antigen cascade. Thus, these studies demonstrate a new paradigm for the use of local tumor irradiation in combination with active specific vaccine therapy to elicit durable antitumor responses of established tumors.


Cancer Research | 2004

Sublethal Irradiation of Human Tumor Cells Modulates Phenotype Resulting in Enhanced Killing by Cytotoxic T Lymphocytes

Charlie T. Garnett; Claudia Palena; Mala Chakarborty; Kwong-Yok Tsang; Jeffrey Schlom; James W. Hodge

Local radiation of tumor masses is an established modality for the therapy of a range of human tumors. It has recently been recognized that doses of radiation, lower than or equal to those that cause direct cytolysis, may alter the phenotype of target tissue by up-regulating gene products that may make tumor cells more susceptible to T-cell–mediated immune attack. Previously, we demonstrated that radiation increased Fas (CD95) gene expression in carcinoembryonic antigen (CEA)-expressing murine tumor cells, which consequently enhanced their susceptibility to CEA-specific CTL-mediated killing. The present study was designed to determine whether these phenomena also occur with human tumor cells. Here, 23 human carcinoma cell lines (12 colon, 7 lung, and 4 prostate) were examined for their response to nonlytic doses of radiation (10 or 20 Gy). Seventy-two hours postirradiation, changes in surface expression of Fas (CD95), as well as expression of other surface molecules involved in T-cell–mediated immune attack such as intercellular adhesion molecule 1, mucin-1, CEA, and MHC class I, were examined. Twenty-one of the 23 (91%) cell lines up-regulated one or more of these surface molecules postirradiation. Furthermore, five of five irradiated CEA+/A2+ colon tumor cells lines demonstrated significantly enhanced killing by CEA-specific HLA-A2–restricted CD8+ CTLs compared with nonirradiated counterparts. We then used microarray analysis to broaden the scope of observed changes in gene expression after radiation and found that many additional genes had been modulated. These up-regulated gene products may additionally enhance the tumor cells’ susceptibility to T-cell–mediated immune attack or serve as additional targets for immunotherapy. Overall, the results of this study suggest that nonlethal doses of radiation can be used to make human tumors more amenable to immune system recognition and attack and form the rational basis for the combinatorial use of cancer vaccines and local tumor irradiation.


Clinical Cancer Research | 2005

Combining a Recombinant Cancer Vaccine with Standard Definitive Radiotherapy in Patients with Localized Prostate Cancer

James L. Gulley; Philip M. Arlen; Anne Bastian; Steven Morin; Jennifer L. Marte; Patricia Beetham; Kwong-Yok Tsang; Junko Yokokawa; James W. Hodge; Cynthia Ménard; Kevin Camphausen; C. Norman Coleman; Francis J. Sullivan; Seth M. Steinberg; Jeffrey Schlom; William L. Dahut

Purpose: Many patients with clinically localized prostate cancer develop biochemical failure despite excellent local therapy perhaps due to occult metastatic disease. One potential solution is the utilization of a well-tolerated systemic therapy (e.g., vaccine) in concert with local therapy. Experimental Design: We present a randomized phase II clinical trial designed to determine if a poxviral vaccine encoding prostate-specific antigen (PSA) can induce a PSA-specific T-cell response when combined with radiotherapy in patients with clinically localized prostate cancer. Thirty patients were randomized in a 2:1 ratio into vaccine plus radiotherapy or radiotherapy-only arms. Those patients in the combination arm received a “priming” vaccine with recombinant vaccinia (rV) PSA plus r V containing the T-cell costimulatory molecule B7.1 (rV-B7.1) followed by monthly booster vaccines with recombinant fowlpox PSA. The vaccines were given with local granulocyte-macrophage colony-stimulating factor and low-dose systemic interleukin-2. Standard external beam radiation therapy was given between the fourth and the sixth vaccinations. Results: Seventeen of 19 patients in the combination arm completed all eight vaccinations and 13 of these 17 patients had increases in PSA-specific T cells of at least 3-fold versus no detectable increases in the radiotherapy-only arm (P < 0.0005). There was also evidence of de novo generation of T cells to well-described prostate-associated antigens not found in the vaccine, providing indirect evidence of immune-mediated tumor killing. The vaccine was well tolerated. Conclusion: This vaccine regimen can be safely given in patients undergoing radiation therapy for localized prostate cancer, with the majority of patients generating a PSA-specific cellular immune response to vaccine.


Journal of Immunology | 2003

Irradiation of Tumor Cells Up-Regulates Fas and Enhances CTL Lytic Activity and CTL Adoptive Immunotherapy

Mala Chakraborty; Scott I. Abrams; Kevin Camphausen; Kebin Liu; Tamalee Scott; C. Norman Coleman; James W. Hodge

CD8+ CTL play important roles against malignancy in both active and passive immunotherapy. Nonetheless, the success of antitumor CTL responses may be improved by additional therapeutic modalities. Radiotherapy, which has a long-standing use in treating neoplastic disease, has been found to induce unique biologic alterations in cancer cells affecting Fas gene expression, which, consequently, may influence the overall lytic efficiency of CTL. Here, in a mouse adenocarcinoma cell model, we examined whether exposure of these tumor cells to sublethal doses of irradiation 1) enhances Fas expression, leading to more efficient CTL killing via Fas-dependent mechanisms in vitro; and 2) improves antitumor activity in vivo by adoptive transfer of these Ag-specific CTL. Treatment of carcinoembryonic Ag-expressing MC38 adenocarcinoma cells with irradiation (20 Gy) in vitro enhanced Fas expression at molecular, phenotypic, and functional levels. Furthermore, irradiation sensitized these targets to Ag-specific CTL killing via the Fas/Fas ligand pathway. We examined the effect of localized irradiation of s.c. growing tumors on the efficiency of CTL adoptive immunotherapy. Irradiation caused up-regulation of Fas by these tumor cells in situ, based on immunohistochemistry. Moreover, localized irradiation of the tumor significantly potentiated tumor rejection by these carcinoembryonic Ag-specific CTL. Overall, these results showed for the first time that 1) regulation of the Fas pathway in tumor cells by irradiation plays an important role in their sensitization to Ag-specific CTL; and 2) a combination regimen of tumor-targeted irradiation and CTL promotes more effective antitumor responses in vivo, which may have implications for the combination of immunotherapy and radiation therapy.


Journal of Clinical Oncology | 2005

Phase I Study of Sequential Vaccinations With Fowlpox-CEA(6D)-TRICOM Alone and Sequentially With Vaccinia-CEA(6D)-TRICOM, With and Without Granulocyte-Macrophage Colony-Stimulating Factor, in Patients With Carcinoembryonic Antigen–Expressing Carcinomas

John L. Marshall; James L. Gulley; Philip M. Arlen; Patricia Beetham; Kwong-Yok Tsang; Rebecca Slack; James W. Hodge; Sandra Doren; Douglas W. Grosenbach; Jimmy Hwang; Evelyn Fox; Lauretta Odogwu; Susie Park; Dennis Panicali; Jeffrey Schlom

PURPOSE Our previous clinical experience with vaccinia and replication-defective avipox recombinant carcinoembryonic antigen (CEA) vaccines has demonstrated safety and clinical activity with a correlation between CEA-specific immune response and survival. Preclinical evidence demonstrated that the addition of the transgenes for three T-cell costimulatory molecules (B7-1, ICAM-1, LFA-3, designated TRICOM) results in a significant improvement in antigen-specific T-cell responses and antitumor activity. We describe here the first trial in humans of the CEA-TRICOM vaccines (also including an enhancer agonist epitope within the CEA gene). PATIENTS AND METHODS Fifty-eight patients with advanced CEA-expressing cancers were accrued to eight cohorts that involved vaccinations with the following: replication-defective fowlpox recombinant (rF)-CEA(6D)-TRICOM; primary vaccination with recombinant vaccinia (rV)-CEA(6D)-TRICOM plus rF-CEA(6D)-TRICOM booster vaccinations; and rV-CEA(6D)-TRICOM and then rF-CEA(6D)-TRICOM, plus granulocyte-macrophage colony-stimulating factor (GM-CSF) with vaccines, or with divided doses of vaccine with GM-CSF. Vaccines were administered every 28 days for six doses and then once every 3 months. Reverting to treatments every 28 days was allowed if patients progressed on the 3-month schedule. RESULTS In this phase I study, no significant toxicity was observed. Twenty-three patients (40%) had stable disease for at least 4 months, with 14 of these patients having prolonged stable disease (> 6 months). Eleven patients had decreasing or stable serum CEA, and one patient had a pathologic complete response. Enhanced CEA-specific T-cell responses were observed in the majority of patients tested. CONCLUSION We demonstrated that the CEA-TRICOM vaccines are safe and can generate significant CEA-specific immune responses, and they seem to have clinical benefit in some patients with advanced cancer.


OncoImmunology | 2014

Consensus guidelines for the detection of immunogenic cell death

Oliver Kepp; Laura Senovilla; Ilio Vitale; Erika Vacchelli; Sandy Adjemian; Patrizia Agostinis; Lionel Apetoh; Fernando Aranda; Vincenzo Barnaba; Norma Bloy; Laura Bracci; Karine Breckpot; David Brough; Aitziber Buqué; Maria G. Castro; Mara Cirone; María I. Colombo; Isabelle Cremer; Sandra Demaria; Luciana Dini; Aristides G. Eliopoulos; Alberto Faggioni; Silvia C. Formenti; Jitka Fucikova; Lucia Gabriele; Udo S. Gaipl; Jérôme Galon; Abhishek D. Garg; François Ghiringhelli; Nathalia A. Giese

Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named “immunogenic cell death” (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.


Vaccine | 1997

Diversified prime and boost protocols using recombinant vaccinia virus and recombinant non-replicating avian pox virus to enhance T-cell immunity and antitumor responses.

James W. Hodge; Joanne P. McLaughlin; Judith Kantor; Jeffrey Schlom

Recombinant vaccinia viruses containing tumor associated genes represent an attractive vector to induce immune responses to weak immunogens in cancer immunotherapy protocols. The property of intense immunogenicity of vaccinia proteins, however, also serves to limit the number of inoculations of recombinant vaccinia viruses. Host immune responses to the first immunization have been shown to limit the replication of subsequent vaccinations and thus reduce effectiveness of boost inoculations. The use of recombinant avian pox viruses (avipox) such as the canarypox (ALVAC) or fowlpox are potential candidates for immunization protocols in that they can infect mammalian cells and express the inserted transgene, but do not replicate in mammalian cells. We report here the construction and characterization of a canarypox (ALVAC) recombinant expressing the human carcinoembryonic antigen (CEA) gene (designated ALVAC-CEA). Antibody, lymphoproliferative and cytolytic T-cell responses as well as tumor inhibition were shown to be elicited by the ALVAC-CEA recombinant in a murine model. The utilization of a diversified immunization scheme using a recombinant vaccinia virus followed by recombinant avian pox virus was shown to be far superior than the use of either one alone in eliciting CEA-specific T-cell responses. Experiments were conducted to determine if the use of a diversified immunization scheme using a recombinant vaccinia virus (rV-CEA) and ALVAC-CEA would be superior to the use of either one alone in eliciting CEA-specific T-cell responses. When mice were immunized with rV-CEA and then ALVAC-CEA. CEA-specific T-cell responses were at least four times greater, and for superior to those achieved with three immunizations of ALVAC-CEA. Multiple boosts of ALVAC-CEA following rV-CEA immunization further potentiated anti-tumor effects and CEA specific T-cell responses. These studies demonstrate the proof of concept of the advantage of diversified immunization protocols employing both recombinant vaccinia and recombinant avipox vectors.


Clinical Cancer Research | 2008

Pilot Study of Vaccination with Recombinant CEA-MUC-1-TRICOM Poxviral-Based Vaccines in Patients with Metastatic Carcinoma

James L. Gulley; Philip M. Arlen; Kwong-Yok Tsang; Junko Yokokawa; Claudia Palena; Diane J. Poole; Cinzia Remondo; Vittore Cereda; Jacquin Jones; Mary Pazdur; Jack P. Higgins; James W. Hodge; Seth M. Steinberg; Herbert L. Kotz; William L. Dahut; Jeffrey Schlom

Purpose: Poxviral vectors have a proven safety record and can be used to incorporate multiple transgenes. Prior clinical trials with poxviral vaccines have shown that immunologic tolerance to self-antigens can be broken. Carcinoembryonic antigen (CEA) and MUC-1 are overexpressed in a substantial proportion of common solid carcinomas. The primary end point of this study was vaccine safety, with immunologic and clinical responses as secondary end points. Experimental Design: We report here a pilot study of 25 patients treated with a poxviral vaccine regimen consisting of the genes for CEA and MUC-1, along with a triad of costimulatory molecules (TRICOM; composed of B7.1, intercellular adhesion molecule 1, and lymphocyte function–associated antigen 3) engineered into vaccinia (PANVAC-V) as a prime vaccination and into fowlpox (PANVAC-F) as a booster vaccination. Results: The vaccine was well tolerated. Apart from injection-site reaction, no grade ≥2 toxicity was seen in more than 2% of the cycles. Immune responses to MUC-1 and/or CEA were seen following vaccination in 9 of 16 patients tested. A patient with clear cell ovarian cancer and symptomatic ascites had a durable (18-month) clinical response radiographically and biochemically, and one breast cancer patient had a confirmed decrease of >20% in the size of large liver metastasis. Conclusions: This vaccine strategy seems to be safe, is associated with both CD8 and CD4 immune responses, and has shown evidence of clinical activity. Further trials with this agent, either alone or in combination with immunopotentiating and other therapeutic agents, are warranted.


Expert Opinion on Investigational Drugs | 2009

Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer

Ravi A. Madan; Philip M. Arlen; Mahsa Mohebtash; James W. Hodge; James L. Gulley

Prostvac is a prostate cancer vaccine regimen consisting of a recombinant vaccinia vector as a primary vaccination, followed by multiple booster vaccinations employing a recombinant fowlpox vector. Both vectors contain the transgenes for prostate-specific antigen (PSA) and multiple T-cell co-stimulatory molecules (TRICOM). The PSA-TRICOM vaccines infect antigen-presenting cells (APCs) and generate proteins that are expressed on the surface of the APCs in an immune context. The interaction of these APCs with T cells initiates a targeted immune response and T cell-mediated tumor cell destruction. Preliminary clinical trials have indicated negligible toxicity, and Phase II trials have suggested a survival benefit after treatment with Prostvac, especially in patients with indolent disease characteristics. Preclinical and clinical data indicate that radiation, hormonal therapy, and chemotherapy may be combined with Prostvac to enhance the vaccines efficacy. Additional strategies are in development to further enhance the clinical benefits of Prostvac, and a Phase III trial is being planned in metastatic castration-resistant prostate cancer.

Collaboration


Dive into the James W. Hodge's collaboration.

Top Co-Authors

Avatar

Jeffrey Schlom

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

James L. Gulley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sofia R. Gameiro

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kwong-Yok Tsang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kwong Y. Tsang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ravi A. Madan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Anna R. Kwilas

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Claudia Palena

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Benedetto Farsaci

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mala Chakraborty

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge