Duhwan Lee
Pohang University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Duhwan Lee.
ACS Nano | 2013
Hyun-woo Kim; Duhwan Lee; Jinhwan Kim; Tae-Il Kim; Won Jong Kim
Graphene oxide has unique physiochemical properties, showing great potential in biomedical applications. In the present work, functionalized reduced graphene oxide (PEG-BPEI-rGO) has been developed as a nanotemplate for photothermally triggered cytosolic drug delivery by inducing endosomal disruption and subsequent drug release. PEG-BPEI-rGO has the ability to load a greater amount of doxorubicin (DOX) than unreduced PEG-BPEI-GO via π-π and hydrophobic interactions, showing high water stability. Loaded DOX could be efficiently released by glutathione (GSH) and the photothermal effect of irradiated near IR (NIR) in test tubes as well as in cells. Importantly, PEG-BPEI-rGO/DOX complex was found to escape from endosomes after cellular uptake by photothermally induced endosomal disruption and the proton sponge effect, followed by GSH-induced DOX release into the cytosol. Finally, it was concluded that a greater cancer cell death efficacy was observed in PEG-BPEI-rGO/DOX complex-treated cells with NIR irradiation than those with no irradiation. This study demonstrated the development of the potential of a PEG-BPEI-rGO nanocarrier by photothermally triggered cytosolic drug delivery via endosomal disruption.
Biomaterials | 2011
Do Won Hwang; Sejin Son; Jaeho Jang; Hyewon Youn; Song Lee; Duhwan Lee; Yun-Sang Lee; Jae Min Jeong; Won Jong Kim; Dong Soo Lee
Recent advances in efficient microRNA (miRNA) delivery techniques using brain-targeted nanoparticles offer critical information for understanding the functional role of miRNAs in vivo, and for supporting targeted gene therapy in terms of treating miRNA-associated neurological diseases. Here, we report the rabies virus glycoprotein (RVG)-labeled non-toxic SSPEI nanomaterials capable of neuron-specific miR-124a delivery to neuron in vivo. The RVG-labeled BPEI-SS (RVG-SSPEI) nanocarrier showed less toxicity in acetylcholine receptor-positive Neuro2a cells, and electrostatic interaction of RVG-SSPEI with miR-124a exhibited optimal transfection efficacy. The RVG-SSPEI polymer specifically targeted Neuro2a using cy5.5-miR-124a mixed with RVG-SSPEI. The functional action of miR-124a oligomers released from polyplexes in the cytoplasmic region was evaluated by a reporter vector containing a miR-124a -binding sequence, and showed a significantly reduced reporter signal in a dose-dependent manner. Cy5.5-miR-124a/RVG-SSPEI- injected into mice via tail veins displayed the enhanced accumulation of miR-124a in the isolated brain. Hindrance of the efficient penetration of neuronal cells by size limitation of the miR-124a/RVG-SSPEI improved with the help of mannitol through blood-brain barrier disruption. These findings indicated that the RVG peptide combined with mannitol infusion using SSPEI polymer for neuron-specific targeting in vivo is sufficient to deliver neurogenic microRNA into the brain.
Journal of Controlled Release | 2015
Yeong Mi Lee; Duhwan Lee; Jihoon Kim; Hansoo Park; Won Jong Kim
CPIEDRPMC (RPM) peptide is a peptide that specifically targets invasive colorectal cancer, which is one of the leading causes of cancer-related deaths worldwide. In this study, we exploited RPM peptide as a targeting ligand to produce a novel and efficient gene delivery system that could potentially be used to treat invasive colon cancer. In order to achieve enhanced specificity to colon cancer cells, the RPM peptide was conjugated to a bioreducible gene carrier consisting of a reducible moiety of disulfide-crosslinked low molecular weight polyethylenimine, IR820 dye, and polyethylene glycol. Here, we examined the physiochemical properties, cytotoxicity, in vitro transfection efficiency, and in vivo biodistribution of the RPM-conjugated polyplex. Our results showed that the RPM-conjugated gene carrier formed a compact polyplex with pDNA that had low toxicity. Furthermore, the RPM-conjugated polymer not only had higher cellular uptake in invasive colon cancer than the non-targeted polymer, but also showed enhanced transfection efficiency in invasive colon cancer cells in vitro and in vivo.
Gene Therapy | 2012
Jiwon Jang; Kun-Ho Yoon; Do Won Hwang; Duhwan Lee; Sunyoung Kim
Gene transfer to the early-stage embryonic brain using the ultrasound image-guided gene delivery (UIGD) technique has proven to be valuable for investigating brain development. Thus far, this technology has been restricted to the study of embryonic neurogenesis. When this technique is designed to be employed for the study in adult animals, a long-term stable gene expression will be required. We attempted to develop a retroviral vector suitable for expressing exogenous genes in the brains of postnatal and adult mice in the context of the UIGD technique. Retroviral vectors containing four different long terminal repeats (LTRs) (each from Moloney murine leukemia virus (MoMLV), murine stem cell virus (MSCV), myeloproliferative sarcoma virus (MPSV) and spleen focus-forming virus (SFFV)) were compared using the well-known CE vector having the EF1α internal promoter as a control. The MS vector containing MSCV LTR produced a higher viral titer and a higher level of gene expression than other vectors including CE. The MS vector drove the gene expression in cultured neural stem cells for 3 weeks. Furthermore, the MS vector could efficiently deliver the gene to the mouse central nervous system, as transgene expression was found in various regions of the brains and spinal cords as well as in all major neural cell types. The data from an in vivo luciferase imaging analysis showed that the gene expression from the MS vector was sustainable for almost 3 months. Our data suggested that the MS vector would be suitable to construct mice containing the transgene expressed in the brain or spinal cord in a quick and cost-effective manner.
Scientific Reports | 2016
Jihwa Chung; Hyunbo Shim; Kwanchang Kim; Duhwan Lee; Won Jong Kim; Dong Hoon Kang; Sang Won Kang; Hanjoong Jo; Kihwan Kwon
Atherosclerosis occurs preferentially in arterial regions exposed to disturbed blood flow. Targeting these pro-atherogenic regions is a potential anti-atherogenic therapeutic approach, but it has been extremely challenging. Here, using in vivo phage display approach and the partial carotid ligation model of flow-induced atherosclerosis in mouse, we identified novel peptides that specifically bind to endothelial cells (ECs) exposed to disturbed flow condition in pro-atherogenic regions. Two peptides, CLIRRTSIC and CPRRSHPIC, selectively bound to arterial ECs exposed to disturbed flow not only in the partially ligated carotids but also in the lesser curvature and branching point of the aortic arch in mice as well as human pulmonary artery branches. Peptides were conjugated to branched polyethylenimine-polyethylene glycol polymer to generate polyplexes carrying siRNA targeting intercellular adhesion molecule-1 (siICAM-1). In mouse model, CLIRRTSIC polyplexes carrying si-ICAM-1 specifically bound to endothelium in disturbed flow regions, reducing endothelial ICAM-1 expression. Mass spectrometry analysis revealed that non-muscle myosin heavy chain II A (NMHC IIA) is a protein targeted by CLIRRTSIC peptide. Further studies showed that shear stress regulates NMHC IIA expression and localization in ECs. The CLIRRTSIC is a novel peptide that could be used for targeted delivery of therapeutics such as siRNAs to pro-atherogenic endothelium.
ChemMedChem | 2014
Duhwan Lee; Yeong Mi Lee; Cherlhyun Jeong; Jun Lee; Won Jong Kim
Cationic polymers are known to afford efficient gene transfection. However, cytotoxicity remains a problem at the molecular weight for optimal DNA delivery. As such, optimized polymeric gene delivery systems are still a sought‐after research goal. A guanidinylated bioreducible branched polyethylenimine (GBPEI‐SS) was synthesized by using a disulfide bond to crosslink the guanidinylated BPEI (GBPEI). GBPEI‐SS showed sufficient plasmid DNA (pDNA) condensation ability. The physicochemical properties of GBPEI‐SS demonstrate that it has the appropriate size (∼200 nm) and surface potential (∼30 mV) at a nitrogen‐to‐phosphorus ratio of 10. No significant toxicity was observed, possibly due to bioreducibility and to the guanidine group delocalizing the positive charge of the primary amine in BPEI. Compared with the nonguanidinylated analogue, BPEI‐SS, GBPEI‐SS showed enhanced transfection efficiency owing to increased cellular uptake and efficient pDNA release by cleavage of disulfide bonds. This system is very efficient for delivering pDNA into cells, thereby achieving high transfection efficiency and low cytotoxicity.
Macromolecular Research | 2012
Duhwan Lee; Kaushik Singha; Juhee Park; Seongbong Jo; Won Jong Kim
AbstractPalmitic acid-conjugated low molecular weight polyethylenimine (PEI-g-PEG-PA) was successfully synthesized to develop an efficient non-viral gene carrier. The judicious integration of hydrophobic palmitic acid and polyethylenimine via hydrophilic polyethylene glycol (PEG) facilitated the formation of nano-sized complex (nanoplex) with plasmid DNA (pDNA) which provided the protection of pDNA against the serumic enzymatic degradation. Furthermore, the delivery system demonstrated enhanced gene transfection efficiency in comparison to unmodified low molecular weight PEI without inducing any significant cytotoxicity.
Macromolecular Bioscience | 2016
Hyounkoo Han; Sohee Son; Sejin Son; Namho Kim; Ji Young Yhee; Jae Hyeop Lee; Jun Sub Choi; Choun Ki Joo; Hohyeon Lee; Duhwan Lee; Won Jong Kim; Sun Hwa Kim; Ick Chan Kwon; Hyuncheol Kim; Kwangmeyung Kim
The aim of this study is to establish the safe and effective ocular delivery system of therapeutic small interfering RNA (siRNA) in corneal neovascularization therapy. The major hurdle present in siRNA-based corneal neovascularization (CNV) therapy is severe cytotoxicity caused by repetitive drug treatment. A reducible branched polyethylenimine (rBPEI)-based nanoparticle (NP) system is utilized as a new siRNA carrier as a hope for CNV therapy. The thiolated BPEI is readily self-crosslinked in mild conditions to make high molecular weight rBPEI thus allowing the creation of stable siRNA/rBPEI nanoparticles (siRNA-rBPEI-NPs). In the therapeutic region, the rBPEI polymeric matrix is effectively degraded into nontoxic LMW BPEI inside the reductive cytosol causing the rapid release of the encapsulated siRNA into the cytosol to carry out its function. The fluorescent-labeled siRNA-rBPEI-NPs can release siRNA into the entire corneal region after subconjuctival injection into the eye of Sprague Dawley rats thus confirming the proof of concept of this system.
Radiology | 2014
Jung-Hoon Park; Jin Hyoung Kim; Eun Young Kim; Jinoo Kim; Ho-Young Song; Won Jong Kim; Duhwan Lee; Jihong Park; Soohwan Kim
PURPOSE To evaluate the effectiveness of small interfering RNA (siRNA) targeting matrix metalloproteinase 9 (MMP-9) in suppressing granulation tissue formation caused by bare metallic stent placement in a rat urethral model. MATERIALS AND METHODS All experiments were approved by the committee of animal research. In 20 Sprague-Dawley male rats (weight range, 300-350 g), a self-expanding metallic bare stent was inserted in the urethra with fluoroscopic guidance. One group of 10 rats (group A) was treated with MMP-9 siRNA/bioreducible branched polyethylenimine-disulfide cross-linked-indocyanine green (bioreducible BPEI-SS-ICG), while the other group of 10 rats (group B) received control siRNA/bioreducible BPEI-SS-ICG treatment. All rats were sacrificed at 4 weeks. The therapeutic effectiveness of the MMP-9 siRNA/bioreducible BPEI-SS-ICG complex was assessed by comparing the two results of retrograde urethrography, histologic examination, and quantification of MMP-9 by using zymography and Western blot analysis between the two groups. The Mann-Whitney U test was used to evaluate differences. RESULTS Stent placement was successful in all rats without a single case of migration at follow-up. Retrograde urethrography performed 4 weeks after stent placement demonstrated significantly larger luminal diameters of the urethra within the stents in group A compared with those in group B (P = .011). Histologic analysis revealed that the mean percentage of granulation tissue area (P < .001), mean number of epithelial layers (P < .001), and mean thickness of submucosal fibrosis (P < .001) were significantly decreased in group A compared with group B. Meanwhile, the mean density of inflammatory cell infiltration did not significantly differ between the two groups (P = .184). Quantitative analysis disclosed MMP-9 levels to be lower in group A relative to group B, indicating positive inhibition of MMP-9 by MMP-9 siRNA/bioreducible BPEI-SS-ICG. CONCLUSION MMP-9 siRNA/bioreducible BPEI-SS-ICG is effective for inhibiting granulation tissue formation after bare metallic stent placement in a rat urethral model.
Biomaterials Science | 2015
Jihoon Kim; Swapan Pramanick; Duhwan Lee; Hansoo Park; Won Jong Kim