Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dukki Han is active.

Publication


Featured researches published by Dukki Han.


Environmental Science & Technology | 2010

Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds

Tatsuya Unno; Jeonghwan Jang; Dukki Han; Joon Ha Kim; Michael J. Sadowsky; Ok Sun Kim; Jongsik Chun; Hor Gil Hur

While many current microbial source tracking (MST) methods rely on the use of specific molecular marker genes to identify sources of fecal contamination, these methods often fail to determine all point and nonpoint contributors of fecal inputs into waterways. In this study, we developed a new library-dependent MST method that uses pyrosequencing-derived shared operational taxonomy units (OTUs) to define sources of fecal contamination in waterways. A total 56,841 pyrosequencing reads of 16S rDNA obtained from the feces of humans and animals were evaluated and used to compare fecal microbial diversity in three freshwater samples obtained from the Yeongsan river basin in Jeonnam Province, South Korea. Sites included an urbanized agricultural area (Y1) (Escherichia coli counts ≥ 1600 CFU/100 mL), an open area (Y2) with no major industrial activities (940 CFU/100 mL), and a typical agricultural area (Y3) (≥ 1600 CFU/100 mL). Data analyses indicated that the majority of bacteria in the feces of humans and domesticated animals were comprised of members of the phyla Bacteroidetes or Firmicutes, whereas the majority of bacteria in wild goose feces and freshwater samples were classified to the phylum Proteobacteria. Analysis of OTUs shared between the fecal and environmental samples suggested that the potential sources of the fecal contamination at the sites were of human and swine origin. Quantification of fecal contamination was also examined by comparing the density of pyrosequencing reads in each fecal sample within shared OTUs. Taken together, our results indicated that analysis of shared OTUs derived from barcoded pyrosequencing reads provide the necessary resolution and discrimination to be useful as a next generation platform for microbial source tracking studies.


Applied and Environmental Microbiology | 2009

Absence of Escherichia coli Phylogenetic Group B2 Strains in Humans and Domesticated Animals from Jeonnam Province, Republic of Korea

Tatsuya Unno; Dukki Han; Jeonghwan Jang; Sunnim Lee; GwangPyo Ko; Ha Young Choi; Joon Ha Kim; Michael J. Sadowsky; Hor-Gil Hur

ABSTRACT Multiplex PCR analyses of DNAs from genotypically unique Escherichia coli strains isolated from the feces of 138 humans and 376 domesticated animals from Jeonnam Province, South Korea, performed using primers specific for the chuA and yjaA genes and an unknown DNA fragment, TSPE4.C2, indicated that none of the strains belonged to E. coli phylogenetic group B2. In contrast, phylogenetic group B2 strains were detected in about 17% (8 of 48) of isolates from feces of 24 wild geese and in 3% (3 of 96) of isolates obtained from the Yeongsan River in Jeonnam Province, South Korea. The distribution of E. coli strains in phylogenetic groups A, B1, and D varied depending on the host examined, and there was no apparent seasonal variation in the distribution of strains in phylogenetic groups among the Yeongsan River isolates. The distribution of four virulence genes (eaeA, hlyA, stx1, and stx2) in isolates was also examined by using multiplex PCR. Virulence genes were detected in about 5% (38 of 707) of the total group of unique strains examined, with 24, 13, 13, and 9 strains containing hlyA, eaeA, stx2, and stx1, respectively. The virulence genes were most frequently present in phylogenetic group B1 strains isolated from beef cattle. Taken together, results of these studies indicate that E. coli strains in phylogenetic group B2 were rarely found in humans and domesticated animals in Jeonnam Province, South Korea, and that the majority of strains containing virulence genes belonged to phylogenetic group B1 and were isolated from beef cattle. Results of this study also suggest that the relationship between the presence and types of virulence genes and phylogenetic groupings may differ among geographically distinct E. coli populations.


International Journal of Food Microbiology | 2011

The occurrence of virulence traits among high-level aminoglycosides resistant Enterococcus isolates obtained from feces of humans, animals, and birds in South Korea.

Dukki Han; Tatsuya Unno; Jeonghwan Jang; Kyungtaek Lim; Sun Nim Lee; GwangPyo Ko; Michael J. Sadowsky; Hor Gil Hur

Enterococcus isolates (1500) obtained from the feces of 48 humans, 209 domesticated food animals, and 155 wild geese in South Korea were characterized with respect to species status by PCR analyses and resistance to antibiotics. Of the 1500 strains examined, the majority (n=577) were Enterococcus faecalis from 224 (54.4%) of the samples feces, while 299 were of E. faecium from 125 of the samples (30.3%), 224 were E. hirae from 101 (24.5%) of the samples, 94 were E. casseliflavus from 43 (10.4%) of the samples, and one was E. gallinarum. While 305 isolated from 125 (30.3%) of the samples were unidentified species. Approximately 15, 60, 50, 55, 3, and 40% of samples obtained from beef cattle, chickens, ducks, swine, wild geese, and humans, respectively, yielded Enterococcus isolates that were resistant to high-levels of aminoglycosides (i.e., of gentamicin, kanamycin, and streptomycin, minimum inhibitory concentrations were >1000 mg/l). The 180 Enterococcus isolates that showed high levels of resistance to aminoglycoside antibiotics (HLAR) were screened for virulence genes encoding for aggregation substance (agg), cytolysin activator (cylA), gelatinase (gelE) and surface protein (esp). Of those, the gelE gene was found most frequently in chickens and ducks of the HLAR isolates, while 56 E. faecalis and 13 E. faecium HLAR were gelatinase positive and showed hemolysin activity. Multiple antibiotic resistant Enterococcus isolates carrying virulence genes were most frequently isolated from poultry and swine, and were mostly E. faecalis or E. faecium. These findings suggest that restriction of the use of antibiotics in food animal operations in South Korea, especially those involved in poultry and swine production would be desirable.


Science of The Total Environment | 2010

High diversity and abundance of antibiotic-resistant Escherichia coli isolated from humans and farm animal hosts in Jeonnam Province, South Korea.

Tatsuya Unno; Dukki Han; Jeonghwan Jang; Sun Nim Lee; Joon Ha Kim; GwangPyo Ko; Bong Gyu Kim; Joong Hoon Ahn; Robert A. Kanaly; Michael J. Sadowsky; Hor Gil Hur

The spread of antibiotics resistance among bacteria is a threat to human health. Since South Korea uses approximately 1.5 times more antibiotics than do other OECD countries, this is likely to impact the numbers and types of antibiotic-resistant bacteria found in the environment. In this study we examined feces from domesticated animals and humans for the diversity and abundance of antibiotic-resistant Escherichia coli. Abundant antibiotic-resistant E. coli were isolated from all the tested animals and humans and were examined by horizontal, fluorophore-enhanced, rep-PCR (HFERP) DNA fingerprint analysis. A total of 793 unique, non-clonal, E. coli isolates were obtained from the 513 human and animal hosts examined. Antibiotic resistance analysis, done using 14 antibiotics, indicated that 72.3% of the isolates (573 of 793) were found resistant to more than one antibiotic. The E. coli isolated from swine were resistant to the greatest number of antibiotics. Tetracycline resistant E. coli were routinely isolated from all animal hosts (36 to 77% per host), except for dairy cattle (9.3%). Twenty nine E. coli isolates from all hosts, except for duck, were resistant to more than 10 antibiotics. Gene transfer and southern hybridization studies revealed that resistance to 13 of the antibiotics was self-transmissible, and likely mediated by plasmids and integrons. Since genetically diverse and numerically abundant antibiotic-resistant E. coli were consistently recovered from chicken, swine and other domesticated animals in South Korea, our results suggest that the use of sub-therapeutic levels of antibiotics for disease prophylaxis and growth promotion should be curtailed.


Journal of Environmental Sciences-china | 2010

Evaluation of the relationship between two different methods for enumeration fecal indicator bacteria: colony-forming unit and most probable number.

Kyung Hwa Cho; Dukki Han; Yongeun Park; Seung Won Lee; Sung Min Cha; Joo-Hyon Kang; Joon Ha Kim

Most probable number (MPN) and colony-forming unit (CFU) estimates of fecal indicator bacteria (FIB) concentration are common measures of water quality in aquatic environments. Thus, FIB intensively monitored in Yeongsan Watershed in an attempt to compare two different methods and to develop a statistical model to convert from CFU to MPN estimates or vice versa. As a result, the significant difference was found in the MPN and CFU estimates. The enumerated Escherichia coli concentrations in MPN are greater than those in CFU, except for the measurement in winter. Especially in fall, E. coli concentrations in MPN are one order of magnitude greater than that in CFU. Contrarily, enterococci bacteria in MPN are lower than those in CFU. However, in general, a strongly positive relationship are found between MPN and CFU estimates. Therefore, the statistical models were developed, and showed the reasonable converting FIB concentrations from CFU estimates to MPN estimates. We expect this study will provide preliminary information towards future research on whether different analysis methods may result in different water quality standard violation frequencies for the same water sample.


PLOS ONE | 2014

Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting.

Dukki Han; Ilnam Kang; Ho Kyung Ha; Hyuncheol Kim; Ok-Sun Kim; Bang Yong Lee; Jang-Cheon Cho; Hor-Gil Hur; Yoo Kyung Lee

From July to August 2010, the IBRV ARAON journeyed to the Pacific sector of the Arctic Ocean to monitor bacterial variation in Arctic summer surface-waters, and temperature, salinity, fluorescence, and nutrient concentrations were determined during the ice-melting season. Among the measured physicochemical parameters, we observed a strong negative correlation between temperature and salinity, and consequently hypothesized that the melting ice decreased water salinity. The bacterial community compositions of 15 samples, includicng seawater, sea-ice, and melting pond water, were determined using a pyrosequencing approach and were categorized into three habitats: (1) surface seawater, (2) ice core, and (3) melting pond. Analysis of these samples indicated the presence of local bacterial communities; a deduction that was further corroborated by the discovery of seawater- and ice-specific bacterial phylotypes. In all samples, the Alphaproteobacteria, Flavobacteria, and Gammaproteobacteria taxa composed the majority of the bacterial communities. Among these, Alphaproteobacteria was the most abundant and present in all samples, and its variation differed among the habitats studied. Linear regression analysis suggested that changes in salinity could affect the relative proportion of Alphaproteobacteria in the surface water. In addition, the species-sorting model was applied to evaluate the population dynamics and environmental heterogeneity in the bacterial communities of surface mixed layer in the Arctic Ocean during sea-ice melting.


Materials Science and Engineering A-structural Materials Properties Microstructure and Processing | 1996

High temperature creep behavior of Cr3C2 ceramic composite

J.H. Kim; Dukki Han; Ki-Seok Kim

Abstract The high temperature creep behaviors of Cr 3 C 2 composite were investigated under compressive and bending creep. The stress exponent and activation energy of Cr 3 C 2 composite were obtained at 1000 and 1050 °C. Assuming different tensile and compressive responses in a ceramic material, bending creep responses of Cr 3 C 2 composite were analyzed numerically. The numerical analysis showed that the stress state at the cross-section of a crept sample was redistributed nonlinearly and the neutral axis moved toward the compressive region as the applied stress increased during bending creep.


FEMS Microbiology Ecology | 2015

Dynamic changes in the population structure of Escherichia coli in the Yeongsan River Basin of South Korea

Jeonghwan Jang; Doris Yoong Wen Di; Dukki Han; Tatsuya Unno; Jeom Ho Lee; Michael J. Sadowsky; Hor Gil Hur

Although Escherichia coli has been used as an indicator to examine fecal contamination of aquatic environment, it also has been reported to become naturalized to secondary habitats, including soil, water and beach sand. A total of 2880 E. coli isolates obtained from surface water and sediment samples from the Yeongsan River in 2013 were genotyped by using the horizontal fluorophore-enhanced rep-PCR DNA fingerprinting technique. Although different E. coli genotypic groups were observed between surface water and sediments in the dry season, they were mingled and undifferentiated from each other in the rainy season. This indicates that there are frequent sediment resuspension events in the river basin. Moreover, the genotypic composition of the E. coli population in the Yeongsan River basin changes over months and years, implying that genotypic structure of E. coli populations dynamically fluctuates in the river environment. Consequently, our data suggests that the use of E. coli libraries for fecal source tracking needs to be reassessed to account for the changing structure of riverine E. coli populations.


Scientific Reports | 2017

Inference on Paleoclimate Change Using Microbial Habitat Preference in Arctic Holocene Sediments

Dukki Han; Seung-Il Nam; Ji-Hoon Kim; Ruediger Stein; Frank Niessen; Young Jin Joe; Yu-Hyeon Park; Hor-Gil Hur

The present study combines data of microbial assemblages with high-resolution paleoceanographic records from Core GC1 recovered in the Chukchi Sea. For the first time, we have demonstrated that microbial habitat preferences are closely linked to Holocene paleoclimate records, and found geological, geochemical, and microbiological evidence for the inference of the sulphate-methane transition zone (SMTZ) in the Chukchi Sea. In Core GC1, the layer of maximum crenarchaeol concentration was localized surrounding the SMTZ. The vertically distributed predominant populations of Gammaproteobacteria and Marine Group II Euryarchaeota (MG-II) were consistent with patterns of the known global SMTZs. MG-II was the most prominent archaeal group, even within the layer of elevated concentrations of crenarchaeol, an archaeal lipid biomarker most commonly used for Marine Group I Thaumarchaeota (MG-I). The distribution of MG-I and MG-II in Core GC1, as opposed to the potential contribution of MG-I to the marine tetraether lipid pool, suggests that the application of glycerol dibiphytanyl glycerol tetraethers (GDGT)-based proxies needs to be carefully considered in the subsurface sediments owing to the many unknowns of crenarchaeol. In conclusion, microbiological profiles integrated with geological records seem to be useful for tracking microbial habitat preference, which reflect climate-triggered changes from the paleodepositional environment.


Applied and Environmental Microbiology | 2017

Season-Specific Occurrence of Potentially Pathogenic Vibrio spp. on the Southern Coast of South Korea

Doris Yoong Wen Di; Anna Lee; Jeonghwan Jang; Dukki Han; Hor Gil Hur

ABSTRACT Vibrio species are widely distributed in warm estuarine and coastal environments, and they can infect humans through the consumption of raw and mishandled contaminated seafood. In this study, we aimed to isolate and observe the distribution of enteropathogenic Vibrio spp. from environments of the southern coast of South Korea over a season cycle. A total of 10,983 isolates of Vibrio spp. were obtained from tidal water and mud samples over a 1-year period from five sampling sites along the southwest coast of South Korea. We found that Vibrio alginolyticus (n = 6,262) and Vibrio parahaemolyticus (n = 1,757) were ubiquitous in both tidal water and mud year round, whereas Vibrio cholerae (n = 24) and Vibrio vulnificus (n = 130) were seasonally specific to summer. While all V. cholerae isolates were nontoxigenic (non-O1 and non-O139), more than 88% of V. vulnificus isolates possessed the virulence factor elastolytic protease (encoded by vvp). Interestingly, V. parahaemolyticus, which was omnipresent in all seasons, contained the virulence factors thermostable direct hemolysin (encoded by tdh) and thermostable direct hemolysin-related hemolysin (encoded by trh) in larger amounts in June (29 trh-positive strains) and September (14 tdh-, 36 trh-, and 12 tdh- and trh-positive strains) than in December (4 trh-positive strains) and February (3 tdh-positive strains), and virulence factors were absent from isolates detected in April. To understand why virulence factors were detected only in the warm season and were absent in the cold season although the locations are static, long-term monitoring and particularly seasonal study are necessary. IMPORTANCE The presence of enteropathogenic Vibrio species (Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus), which cause acute diarrheal infection, septicemia, and wound infections upon ingestion through food and water, is usually associated with temperature. The World Health Organization (WHO) has estimated that there are 1.4 to 4.3 million cases and 28,000 to 142,000 deaths per year worldwide caused by cholera disease. In South Korea alone, consumption is as much as 52.4 kg of fish and shellfish per year per capita. Our findings suggested that seasonally specific acceleration of these possible pathogenic Vibrio spp. may threaten seafood safety and increase the risk of illness in South Korea, where local people consume raw fish during warmer months.

Collaboration


Dive into the Dukki Han's collaboration.

Top Co-Authors

Avatar

Hor-Gil Hur

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jeonghwan Jang

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tatsuya Unno

Jeju National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hor Gil Hur

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Joon Ha Kim

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

GwangPyo Ko

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Sun Nim Lee

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge