Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jeonghwan Jang is active.

Publication


Featured researches published by Jeonghwan Jang.


Environmental Science & Technology | 2010

Use of barcoded pyrosequencing and shared OTUs to determine sources of fecal bacteria in watersheds

Tatsuya Unno; Jeonghwan Jang; Dukki Han; Joon Ha Kim; Michael J. Sadowsky; Ok Sun Kim; Jongsik Chun; Hor Gil Hur

While many current microbial source tracking (MST) methods rely on the use of specific molecular marker genes to identify sources of fecal contamination, these methods often fail to determine all point and nonpoint contributors of fecal inputs into waterways. In this study, we developed a new library-dependent MST method that uses pyrosequencing-derived shared operational taxonomy units (OTUs) to define sources of fecal contamination in waterways. A total 56,841 pyrosequencing reads of 16S rDNA obtained from the feces of humans and animals were evaluated and used to compare fecal microbial diversity in three freshwater samples obtained from the Yeongsan river basin in Jeonnam Province, South Korea. Sites included an urbanized agricultural area (Y1) (Escherichia coli counts ≥ 1600 CFU/100 mL), an open area (Y2) with no major industrial activities (940 CFU/100 mL), and a typical agricultural area (Y3) (≥ 1600 CFU/100 mL). Data analyses indicated that the majority of bacteria in the feces of humans and domesticated animals were comprised of members of the phyla Bacteroidetes or Firmicutes, whereas the majority of bacteria in wild goose feces and freshwater samples were classified to the phylum Proteobacteria. Analysis of OTUs shared between the fecal and environmental samples suggested that the potential sources of the fecal contamination at the sites were of human and swine origin. Quantification of fecal contamination was also examined by comparing the density of pyrosequencing reads in each fecal sample within shared OTUs. Taken together, our results indicated that analysis of shared OTUs derived from barcoded pyrosequencing reads provide the necessary resolution and discrimination to be useful as a next generation platform for microbial source tracking studies.


Applied and Environmental Microbiology | 2009

Absence of Escherichia coli Phylogenetic Group B2 Strains in Humans and Domesticated Animals from Jeonnam Province, Republic of Korea

Tatsuya Unno; Dukki Han; Jeonghwan Jang; Sunnim Lee; GwangPyo Ko; Ha Young Choi; Joon Ha Kim; Michael J. Sadowsky; Hor-Gil Hur

ABSTRACT Multiplex PCR analyses of DNAs from genotypically unique Escherichia coli strains isolated from the feces of 138 humans and 376 domesticated animals from Jeonnam Province, South Korea, performed using primers specific for the chuA and yjaA genes and an unknown DNA fragment, TSPE4.C2, indicated that none of the strains belonged to E. coli phylogenetic group B2. In contrast, phylogenetic group B2 strains were detected in about 17% (8 of 48) of isolates from feces of 24 wild geese and in 3% (3 of 96) of isolates obtained from the Yeongsan River in Jeonnam Province, South Korea. The distribution of E. coli strains in phylogenetic groups A, B1, and D varied depending on the host examined, and there was no apparent seasonal variation in the distribution of strains in phylogenetic groups among the Yeongsan River isolates. The distribution of four virulence genes (eaeA, hlyA, stx1, and stx2) in isolates was also examined by using multiplex PCR. Virulence genes were detected in about 5% (38 of 707) of the total group of unique strains examined, with 24, 13, 13, and 9 strains containing hlyA, eaeA, stx2, and stx1, respectively. The virulence genes were most frequently present in phylogenetic group B1 strains isolated from beef cattle. Taken together, results of these studies indicate that E. coli strains in phylogenetic group B2 were rarely found in humans and domesticated animals in Jeonnam Province, South Korea, and that the majority of strains containing virulence genes belonged to phylogenetic group B1 and were isolated from beef cattle. Results of this study also suggest that the relationship between the presence and types of virulence genes and phylogenetic groupings may differ among geographically distinct E. coli populations.


International Journal of Food Microbiology | 2011

The occurrence of virulence traits among high-level aminoglycosides resistant Enterococcus isolates obtained from feces of humans, animals, and birds in South Korea.

Dukki Han; Tatsuya Unno; Jeonghwan Jang; Kyungtaek Lim; Sun Nim Lee; GwangPyo Ko; Michael J. Sadowsky; Hor Gil Hur

Enterococcus isolates (1500) obtained from the feces of 48 humans, 209 domesticated food animals, and 155 wild geese in South Korea were characterized with respect to species status by PCR analyses and resistance to antibiotics. Of the 1500 strains examined, the majority (n=577) were Enterococcus faecalis from 224 (54.4%) of the samples feces, while 299 were of E. faecium from 125 of the samples (30.3%), 224 were E. hirae from 101 (24.5%) of the samples, 94 were E. casseliflavus from 43 (10.4%) of the samples, and one was E. gallinarum. While 305 isolated from 125 (30.3%) of the samples were unidentified species. Approximately 15, 60, 50, 55, 3, and 40% of samples obtained from beef cattle, chickens, ducks, swine, wild geese, and humans, respectively, yielded Enterococcus isolates that were resistant to high-levels of aminoglycosides (i.e., of gentamicin, kanamycin, and streptomycin, minimum inhibitory concentrations were >1000 mg/l). The 180 Enterococcus isolates that showed high levels of resistance to aminoglycoside antibiotics (HLAR) were screened for virulence genes encoding for aggregation substance (agg), cytolysin activator (cylA), gelatinase (gelE) and surface protein (esp). Of those, the gelE gene was found most frequently in chickens and ducks of the HLAR isolates, while 56 E. faecalis and 13 E. faecium HLAR were gelatinase positive and showed hemolysin activity. Multiple antibiotic resistant Enterococcus isolates carrying virulence genes were most frequently isolated from poultry and swine, and were mostly E. faecalis or E. faecium. These findings suggest that restriction of the use of antibiotics in food animal operations in South Korea, especially those involved in poultry and swine production would be desirable.


Science of The Total Environment | 2010

High diversity and abundance of antibiotic-resistant Escherichia coli isolated from humans and farm animal hosts in Jeonnam Province, South Korea.

Tatsuya Unno; Dukki Han; Jeonghwan Jang; Sun Nim Lee; Joon Ha Kim; GwangPyo Ko; Bong Gyu Kim; Joong Hoon Ahn; Robert A. Kanaly; Michael J. Sadowsky; Hor Gil Hur

The spread of antibiotics resistance among bacteria is a threat to human health. Since South Korea uses approximately 1.5 times more antibiotics than do other OECD countries, this is likely to impact the numbers and types of antibiotic-resistant bacteria found in the environment. In this study we examined feces from domesticated animals and humans for the diversity and abundance of antibiotic-resistant Escherichia coli. Abundant antibiotic-resistant E. coli were isolated from all the tested animals and humans and were examined by horizontal, fluorophore-enhanced, rep-PCR (HFERP) DNA fingerprint analysis. A total of 793 unique, non-clonal, E. coli isolates were obtained from the 513 human and animal hosts examined. Antibiotic resistance analysis, done using 14 antibiotics, indicated that 72.3% of the isolates (573 of 793) were found resistant to more than one antibiotic. The E. coli isolated from swine were resistant to the greatest number of antibiotics. Tetracycline resistant E. coli were routinely isolated from all animal hosts (36 to 77% per host), except for dairy cattle (9.3%). Twenty nine E. coli isolates from all hosts, except for duck, were resistant to more than 10 antibiotics. Gene transfer and southern hybridization studies revealed that resistance to 13 of the antibiotics was self-transmissible, and likely mediated by plasmids and integrons. Since genetically diverse and numerically abundant antibiotic-resistant E. coli were consistently recovered from chicken, swine and other domesticated animals in South Korea, our results suggest that the use of sub-therapeutic levels of antibiotics for disease prophylaxis and growth promotion should be curtailed.


Journal of Applied Microbiology | 2017

Environmental Escherichia coli: ecology and public health implications—a review

Jeonghwan Jang; Hor-Gil Hur; Michael J. Sadowsky; Muruleedhara N. Byappanahalli; Tao Yan; Satoshi Ishii

Escherichia coli is classified as a rod‐shaped, Gram‐negative bacterium in the family Enterobacteriaceae. The bacterium mainly inhabits the lower intestinal tract of warm‐blooded animals, including humans, and is often discharged into the environment through faeces or wastewater effluent. The presence of E. coli in environmental waters has long been considered as an indicator of recent faecal pollution. However, numerous recent studies have reported that some specific strains of E. coli can survive for long periods of time, and potentially reproduce, in extraintestinal environments. This indicates that E. coli can be integrated into indigenous microbial communities in the environment. This naturalization phenomenon calls into question the reliability of E. coli as a faecal indicator bacterium (FIB). Recently, many studies reported that E. coli populations in the environment are affected by ambient environmental conditions affecting their long‐term survival. Large‐scale studies of population genetics revealed the diversity and complexity of E. coli strains in various environments, which are affected by multiple environmental factors. This review examines the current knowledge on the ecology of E. coli strains in various environments with regard to its role as a FIB and as a naturalized member of indigenous microbial communities. Special emphasis is given on the growth of pathogenic E. coli in the environment, and the population genetics of environmental members of the genus Escherichia. The impact of environmental E. coli on water quality and public health is also discussed.


Environmental Science & Technology | 2012

Integrated Online System for a Pyrosequencing-Based Microbial Source Tracking Method that Targets Bacteroidetes 16S rDNA

Tatsuya Unno; Doris Yoong Wen Di; Jeonghwan Jang; Yae Seul Suh; Michael J. Sadowsky; Hor Gil Hur

Genotypic microbial source tracking (MST) methods are now routinely used to determine sources of fecal contamination impacting waterways. We previously reported the development of a pyrosequencing-based MST method that assigns contamination sources based on shared operational taxonomic units (OTUs) between fecal and environmental bacterial communities. Despite decreasing sequencing costs, pyrosequencing-based MST approaches are not used in routine water quality monitoring studies due in large part to difficulties in handling massive data sets and difficulties in determining sources of fecal contamination. In the studies presented here we describe the development of an online MST tool, PyroMiST ( http://env1.gist.ac.kr/∼aeml/MST.html) that uses total bacterial or Bacteroidetes 16S rDNA pyrosequencing reads to determine fecal contamination of waterways. The program cd-hit was used for OTU assignment and a Perl script was used to calculate the number of shared OTUs. The analyses require only a small number of pyrosequencing reads from environmental samples. Our results indicate that PyroMiST provides a user-friendly web interface for pyrosequence data that significantly reduces analysis time required to determine potential sources of fecal contamination in the environment.


Environmental Science & Technology | 2013

Pathogenic Escherichia coli Strains Producing Extended-Spectrum β-Lactamases in the Yeongsan River Basin of South Korea

Jeonghwan Jang; Yae Seul Suh; Doris Yoong Wen Di; Tatsuya Unno; Michael J. Sadowsky; Hor Gil Hur

A total of 3564 E. coli isolates obtained from Yeongsan River basin of South Korea were investigated for their production of extended-spectrum β-lactamases (ESBLs) and potential pathogenicity to better understand the linkage between antibiotic-resistant pathogens in the environment and their public health risks. Interestingly, 60% (53 of 89) of the screen-positive ESBL producers were determined to be potentially one or both of the diarrheagenic and extraintestinal pathogenic (ExPEC) pathotypes, suggesting that trade-off between resistance and virulence of E. coli may not apply to this study. In addition, 67% (60 of 89) of the screen-positive ESBL producers possessed more than one β-lactamase gene, and most (59 of 63) of the ESBL producers had the CTX-M-14 enzyme, which is the most dominant ESBL and seems to be related to urban anthropogenic activities. About 68% (36 of 53) of the potential pathogenic strains were resistant to more than 2 non-β-lactam antibiotics. Results from this study indicate that the Yeongsan River basin has been contaminated with antibiotic-resistant and potential pathogenic E. coli strains. While few studies have examined pathogenecity of ESBL-producing bacteria, this study reports the possible public health risk which could be caused by the fecal indicator bacterium itself containing both ESBL genes and virulence factors. This will likely impact the dissemination of potential pathogenic E. coli producing ESBLs in the environment and suggests the need for further investigations of antibiotic-resistant pathogens to prevent public health impacts in the Yeongsan River basin.


Environmental Microbiology | 2011

Prevalence of season-specific Escherichia coli strains in the Yeongsan River Basin of South Korea

Jeonghwan Jang; Tatsuya Unno; Seung Won Lee; Kyung Hwa Cho; Michael J. Sadowsky; GwangPyo Ko; Joon Ha Kim; Hor Gil Hur

Seasonal and spatial variation in the genotypic richness of 3480 Escherichia coli isolates obtained from the Yeongsan River basin in South Korea was investigated by using the horizontal fluorophore-enhanced rep-PCR (HFERP) DNA fingerprinting technique. The relationship between 60 E. coli isolates from each of 58 freshwater samples was determined by using multidimensional scaling (MDS) analysis and self-organized maps (SOMs). The MDS analysis, done based on HFERP DNA fingerprints, showed that E. coli isolates obtained in October through December clustered tightly, while those obtained in other sampling periods were more genetically diverse. However, site-specific E. coli genotypes were not observed. SOMs analysis, done using the 10 most frequently isolated E. coli genotypes, showed the occurrence of season-specific E. coli genotypes and the main SOMs clusters were most influenced by temperature, strain diversity and biochemical oxygen demand. Diversity among E. coli genotypes tended to decrease as water temperature decreased, and the numbers of E. coli genotypes observed in urban area were greater, more diverse and less dependent on water temperature than those obtained from agricultural areas. Taken together, our findings indicate that that an ecological approach needs to be considered in order to obtain a better understanding of E. coli community dynamics in the environment and that SOMs analysis is useful to visualize the multidimensional dependent variables that are influencing the types and dynamics of specific E. coli genotypes in the environment.


PLOS ONE | 2014

Seasonal and Genotypic Changes in Escherichia coli Phylogenetic Groups in the Yeongsan River Basin of South Korea

Jeonghwan Jang; Doris Yoong Wen Di; Anna Lee; Tatsuya Unno; Michael J. Sadowsky; Hor Gil Hur

With 3,480 E. coli strains isolated from the Yeongsan River basin, South Korea, correlations between phylogenetic groups and horizontal fluorophore enhanced rep-PCR (HFERP) genotypes were examined, and environmental factors affecting E. coli phylogenetic groups in the river water were determined. Interestingly, multidimentional scaling (MDS) analyses based on HFERP DNA fingerprint data indicated that E. coli in phylogenetic groups A and B1 were uniquely clustered. Results of self-organized maps (SOMs) analyses also indicated that E. coli phylogenetic groups were seasonally affected by water temperature, with greater occurrences of phylogenetic groups A and B1 in low and high temperature seasons, respectively. The presence of E. coli in phylogenetic groups A and B1 were inversely related. Furthermore, redundancy analysis (RDA) revealed that phylogenetic group B1 correlated positively with temperature, strain diversity, and biochemical oxygen demand (BOD) but negatively with phylogenetic group A. Results of this study indicated that while E. coli strains could be clustered based on their genotypes and environment conditions, their phylogenetic groups did not change in relation to the same conditions. The distributional differences of phylogenetic groups among E. coli populations in different environments may be caused by different genomic adaptability and plasticity of E. coli strains belonging to each phylogenetic group. Although several previous studies have reported different E. coli ecological structures depending on their origins, this study is a first description of the specific environmental factors affecting E. coli phylogenetic groups in river water.


Journal of Bacteriology | 2012

Draft Genome Sequence of Escherichia coli W26, an Enteric Strain Isolated from Cow Feces

Mincheol Kim; Hana Yi; Yong Joon Cho; Jeonghwan Jang; Hor Gil Hur; Jongsik Chun

An enteric bacterium, Escherichia coli W26 (KACC 16630), was isolated from feces from a healthy cow in South Korea. Here, we report the draft genome sequence of the isolate, which is closely affiliated with commensal strains belonging to E. coli phylogroup B1.

Collaboration


Dive into the Jeonghwan Jang's collaboration.

Top Co-Authors

Avatar

Tatsuya Unno

Jeju National University

View shared research outputs
Top Co-Authors

Avatar

Hor-Gil Hur

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hor Gil Hur

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Doris Yoong Wen Di

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dukki Han

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Joon Ha Kim

Gwangju Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

GwangPyo Ko

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Jongsik Chun

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Sun Nim Lee

Gwangju Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge