Dun-Quan Xu
Fourth Military Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dun-Quan Xu.
Respiratory Research | 2010
Dun-Quan Xu; Ying Luo; Yi Liu; Jing Wang; Bo Zhang; Min Xu; Yanxia Wang; Hai-Ying Dong; Ming-Qing Dong; Peng-Tao Zhao; Wen Niu; Manling Liu; Yu-Qi Gao; Zhichao Li
BackgroundPulmonary vascular structure remodeling (PVSR) is a hallmark of pulmonary hypertension. P27kip1, one of critical cyclin-dependent kinase inhibitors, has been shown to mediate anti-proliferation effects on various vascular cells. Beta-estradiol (β-E2) has numerous biological protective effects including attenuation of hypoxic pulmonary hypertension (HPH). In the present study, we employed β-E2 to investigate the roles of p27kip1 and its closely-related kinase (Skp-2) in the progression of PVSR and HPH.MethodsSprague-Dawley rats treated with or without β-E2 were challenged by intermittent chronic hypoxia exposure for 4 weeks to establish hypoxic pulmonary hypertension models, which resemble moderate severity of hypoxia-induced PH in humans. Subsequently, hemodynamic and pulmonary pathomorphology data were gathered. Additionally, pulmonary artery smooth muscle cells (PASMCs) were cultured to determine the anti-proliferation effect of β-E2 under hypoxia exposure. Western blotting or reverse transcriptional polymerase chain reaction (RT-PCR) were adopted to test p27kip1, Skp-2 and Akt-P changes in rat lung tissue and cultured PASMCs.ResultsChronic hypoxia significantly increased right ventricular systolic pressures (RVSP), weight of right ventricle/left ventricle plus septum (RV/LV+S) ratio, medial width of pulmonary arterioles, accompanied with decreased expression of p27kip1 in rats. Whereas, β-E2 treatment repressed the elevation of RVSP, RV/LV+S, attenuated the PVSR of pulmonary arterioles induced by chronic hypoxia, and stabilized the expression of p27kip1. Study also showed that β-E2 application suppressed the proliferation of PASMCs and elevated the expression of p27kip1 under hypoxia exposure. In addition, experiments both in vivo and in vitro consistently indicated an escalation of Skp-2 and phosphorylated Akt under hypoxia condition. Besides, all these changes were alleviated in the presence of β-E2.ConclusionsOur results suggest that β-E2 can effectively attenuate PVSR and HPH. The underlying mechanism may partially be through the increased p27kip1 by inhibiting Skp-2 through Akt signal pathway. Therefore, targeting up-regulation of p27kip1 or down-regulation of Skp-2 might provide new strategies for treatment of HPH.
PLOS ONE | 2013
Ying Luo; Dun-Quan Xu; Hai-Ying Dong; Bo Zhang; Yi Liu; Wen Niu; Ming-Qing Dong; Zhichao Li
We previously showed that tanshinone IIA ameliorated the hypoxia-induced pulmonary hypertension (HPH) partially by attenuating pulmonary artery remodeling. The hypoxia-induced proliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the major causes for pulmonary arterial remodeling, therefore the present study was performed to explore the effects and underlying mechanism of tanshinone IIA on the hypoxia-induced PASMCs proliferation. PASMCs were isolated from male Sprague-Dawley rats and cultured in normoxic (21%) or hypoxic (3%) condition. Cell proliferation was measured with 3 - (4, 5 - dimethylthiazal - 2 - yl) - 2, 5 - diphenyltetrazoliumbromide assay and cell counting. Cell cycle was measured with flow cytometry. The expression of of p27, Skp-2 and the phosphorylation of Akt were measured using western blot and/or RT-PCR respectively. The results showed that tanshinone IIA significantly inhibited the hypoxia-induced PASMCs proliferation in a concentration-dependent manner and arrested the cells in G1/G0-phase. Tanshinone IIA reversed the hypoxia-induced reduction of p27 protein, a cyclin-dependent kinase inhibitor, in PASMCs by slowing down its degradation. Knockdown of p27 with specific siRNA abolished the anti-proliferation of tanshinone IIA. Moreover, tanshinone IIA inhibited the hypoxia-induced increase of S-phase kinase-associated protein 2 (Skp2) and the phosphorylation of Akt, both of which are involved in the degradation of p27 protein. In vivo tanshinone IIA significantly upregulated the hypoxia-induced p27 protein reduction and downregulated the hypoxia-induced Skp2 increase in pulmonary arteries in HPH rats. Therefore, we propose that the inhibition of tanshinone IIA on hypoxia-induce PASMCs proliferation may be due to arresting the cells in G1/G0-phase by slowing down the hypoxia-induced degradation of p27 via Akt/Skp2-associated pathway. The novel information partially explained the anti-remodeling property of tanshinone IIA on pulmonary artery in HPH.
European Journal of Pharmacology | 2010
Jing Wang; Ming-Qing Dong; Manling Liu; Dun-Quan Xu; Ying Luo; Bo Zhang; Lili Liu; Min Xu; Peng-Tao Zhao; Yu-Qi Gao; Zhichao Li
The present study was designed to investigate the vascular effects and underlying mechanisms of tanshinone IIA on isolated rat pulmonary artery. Isometric tension was recorded in the arteries from normal and hypoxic pulmonary hypertension rats under normoxia or hypoxia condition. The results showed that tanshinone IIA exerted a biphasic effect on rat pulmonary artery. The constriction was attenuated by endothelium-denudation but was enhanced by inhibition of nitric oxide synthase. Pretreatment with tetraethylammonium (Ca2+-activated K+ channel inhibitor) upward shifted the concentration-response curve without affecting the maximum dilatation. Pretreatment with zinc protoporphyrin IX (heme oxygenase-1 inhibitor), 4-aminopyridine (KV channel inhibitor), glibenclamide (KATP channel inhibitor) or BaCl2 (inwardly rectifying K+ channel inhibitor) did not affect the vasoreactivity. Meanwhile, tanshinone IIA almost abolished vasoconstriction induced by extracellular Ca2+. Under hypoxia condition, tanshinone IIA eliminated acute hypoxia-induced initial contraction, potentiated following vasorelaxation, attenuated and reversed sustained contraction to relaxation in pulmonary artery from normal rats, and reversed phenylephrine-induced sustained constriction to sustained relaxation in remodeled pulmonary artery from hypoxic pulmonary hypertension rats. We concluded that the mild constrictive effect induced by tanshinone IIA was affected by integrity of endothelium and production of nitric oxide, while the potent dilative effect was endothelium-independent and produced primarily by inhibiting extracellular Ca2+ influx and partially by inhibiting intracellular Ca2+ release, as well as activating Ca2+-activated K+ channels. The modulation of tanshinone IIA on pulmonary vasoreactivity under both acute and chronic hypoxia condition may provide a new insight for curing hypoxic pulmonary hypertension.
Mediators of Inflammation | 2012
Bo Zhang; Min Shen; Min Xu; Lili Liu; Ying Luo; Dun-Quan Xu; Yanxia Wang; Manling Liu; Yi Liu; Hai-Ying Dong; Peng-Tao Zhao; Zhichao Li
Pulmonary hypertension (PH) contributes to the mortality of patients with lung and heart diseases. However, the underlying mechanism has not been completely elucidated. Accumulating evidence suggests that inflammatory response may be involved in the pathogenesis of PH. Macrophage migration inhibitory factor (MIF) is a critical upstream inflammatory mediator which promotes a broad range of pathophysiological processes. The aim of the study was to investigate the role of MIF in the pulmonary vascular remodeling of hypoxia-induced PH. We found that MIF mRNA and protein expression was increased in the lung tissues from hypoxic pulmonary hypertensive rats. Intensive immunoreactivity for MIF was observed in smooth muscle cells of large pulmonary arteries (PAs), endothelial cells of small PAs, and inflammatory cells of hypoxic lungs. MIF participated in the hypoxia-induced PASMCs proliferation, and it could directly stimulate proliferation of these cells. MIF-induced enhanced growth of PASMCs was attenuated by MEK and JNK inhibitor. Besides, MIF antagonist ISO-1 suppressed the ERK1/2 and JNK phosphorylation induced by MIF. In conclusion, the current finding suggested that MIF may act on the proliferation of PASMCs through the activation of the ERK1/2 and JNK pathways, which contributes to hypoxic pulmonary hypertension.
European Journal of Pharmaceutical Sciences | 2013
Yun Shi; Bo Zhang; Xiangjun Chen; Dun-Quan Xu; Yanxia Wang; Hai-Ying Dong; Shi-Rong Ma; Ri-He Sun; Yan-Ping Hui; Zhichao Li
The renin-angiotensin-aldosterone system (RAAS) plays an important role in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Angiotensin converting enzyme 2 (ACE2) plays a protective role in acute lung injury. Osthole, a natural coumarin derivative extracted from traditional Chinese medicines, is known to have anti-inflammatory effect, but the effect of osthole on the ALI is largely unknown. The aim of this study is to explore whether and by what mechanisms osthole protects lipopolysaccharide(LPS)-induced acute lung injury. Herein, we found that osthole had a beneficial effect on LPS-induced ALI in mice. As revealed by survival study, pretreatment with high doses of osthole reduced the mortality of mice from ALI. Osthole pretreatment significantly improved LPS-induced lung pathological changes, reduced lung wet/dry weight ratios and total protein in BALF. Osthole also inhibited the release of inflammatory mediators TNF-α and IL-6. Meanwhile, osthole markedly prevented the loss of ACE2 and Ang1-7 in lung tissue of ALI mice. ACE2 inhibitor blocked the protective effect of osthole in NR 8383 cell lines. Taken together, our study showed that osthole improved survival rate and attenuated LPS-induced ALI and ACE2 may play a role in it.
American Journal of Respiratory Cell and Molecular Biology | 2011
Min Xu; Fa-Le Cao; Lili Liu; Bo Zhang; Yanxia Wang; Hai-Ying Dong; Yan Cui; Ming-Qing Dong; Dun-Quan Xu; Yi Liu; Peng-Tao Zhao; Wen Niu; Zhichao Li
Inhibiting hypoxia-inducible factor (HIF)-1α activity has been proposed as a novel therapeutic target in LPS-induced sepsis syndrome. We have reported that tanshinone IIA (TIIA) can reduce LPS-induced lethality and lung injury in mice, but the precise mechanisms have not been fully described. Therefore, the present study investigated whether the protective effect of TIIA was related to the inhibition of LPS-induced HIF-1α expression and what mechanisms accounted for it. This study showed that TIIA pretreatment improved LPS-induced biochemical and cellular changes and reduced the production of inflammatory cytokines. Pretreatment with TIIA decreased LPS-induced HIF-1α expression in vivo and in vitro. TIIA did not affect the LPS-induced HIF-1α mRNA level but inhibited HIF-1α protein translation by the inhibition of the PI3K/AKT and MAPK pathways and related protein translational regulators, such as p70S6K1, S6 ribosomal protein, 4E-BP1, and eIF4E, and promoted HIF-1α protein degradation via the proteasomal pathway in LPS-stimulated macrophages. These observations partially explain the antiinflammatory effects of TIIA, which provides scientific basis for its application for the treatment of acute lung injury/acute respiratory distress syndrome or sepsis.
Respiratory Physiology & Neurobiology | 2013
Xiangjun Chen; Bo Zhang; Shao-Jie Hou; Yun Shi; Dun-Quan Xu; Yanxia Wang; Manling Liu; Hai-Ying Dong; Ri-He Sun; Nan-Di Bao; Faguang Jin; Zhichao Li
Inhibiting reactive oxygen species (ROS) has been viewed as a therapeutic target for the treatment of acute lung injury (ALI). Osthole, an active component in Chinese herbal medicine, has drawn increasing attention because of its various pharmacological functions, including anti-inflammatory and anti-oxidative activities. The aim of the present study was to examine the effects of osthole on ALI induced by lipopolysaccharide (LPS) through intratracheal instillation. The mRNA and protein expression levels of thioredoxin 1 (Trx1) and the nuclear factor erythroid-2 related factor 2 (Nrf2) were detected by real-time PCR, reverse transcription PCR (RT-PCR) and Western blot, respectively. ROS production was measured by flow cytometry. Our results showed that osthole treatment improved the mice survival rates in the middle and high dosage groups, compared with the untreated LPS group. Moreover, osthole treatment significantly improved LPS-induced lung pathological damage, and it decreased the lung injury scores, lung wet/dry ratios and the total protein level in Bronchoalveolar lavage fluid (BALF). Osthole treatment dramatically reduced the H2O2, MDA and OH levels in the lung homogenates. LDH and ROS were markedly reduced in the osthole+LPS group in vitro. Furthermore, osthole increased Nrf2 and Trx1 expression in terms of mRNA and protein in vivo and in vitro. Nrf2 siRNA (siNrf2) could suppress the beneficial effects of osthole on ALI. In conclusion, the current study demonstrates that osthole exerted protective effects on LPS-induced ALI by up-regulating the Nrf-2/Trx-1 pathway.
Respiratory Physiology & Neurobiology | 2012
Feng Han; Ying Luo; Yanyan Li; Zhongyang Liu; Dun-Quan Xu; Faguang Jin; Zhichao Li
Our previous study showed that seawater can cause lung tissue cell apoptosis; in the present study, the immunohistochemistry and Western blot analysis results demonstrated that Fas, FasL, and cleaved caspase-8 and caspase-3 were up-regulated in the rat lungs exposed to seawater. We found that seawater-induced human lung alveolar epithelial A549 cell apoptosis was concentration and time dependent. Moreover, seawater increased the expression of Fas, FasL, and cleaved caspase-8 and caspase-3 in A549 cells. The incubation of A549 cells in the presence of FasL-neutralising antibody (NOK-2) or caspase-8 inhibitor (Z-IETD-FMK) resulted in a decrease of seawater-induced cell apoptosis. NOK-2 inhibited Fas/FasL interaction and reduced the cleavage of caspase-8 and caspase-3, and Z-IETD-FMK blocked caspase-8 and caspase-3 activation. Seawater similarly produced a significant increase in rat alveolar type II cell apoptosis and expression of Fas and cleaved caspase-8. In summary, the Fas/FasL pathway involved in alveolar epithelial cell (AEC) apoptosis could be important in the pathogenesis of seawater-induced acute lung injury (SW-ALI).
Free Radical Biology and Medicine | 2014
Bo Zhang; Wen Niu; Dun-Quan Xu; Yanyan Li; Manling Liu; Yanxia Wang; Ying Luo; Peng-Tao Zhao; Yi Liu; Ming-Qing Dong; Ri-He Sun; Hai-Ying Dong; Zhichao Li
Pulmonary hypertension is a progressive disease characterized by marked pulmonary arterial remodeling and increased vascular resistance. Inflammation and oxidative stress promote the development of pulmonary hypertension. Oxymatrine, one of the main active components of the Chinese herb Sophora flavescens Ait. (Kushen), plays anti-inflammatory and antioxidant protective roles, which effects on pulmonary arteries remain unclear. This study aimed to investigate the effects of oxymatrine on pulmonary hypertension development. Sprague-Dawley rats were exposed to hypoxia for 28 days or injected with monocrotaline, to develop pulmonary hypertension, along with administration of oxymatrine (50mg/kg/day). Hemodynamics and pulmonary arterial remodeling data from the rats were then obtained. The antiproliferative effect of oxymatrine was verified by in vitro assays. The inflammatory cytokine mRNA levels and leukocyte and T cell accumulation in lung tissue were detected. The antioxidative effects of oxymatrine were explored in vitro. Our study shows that oxymatrine treatment attenuated right-ventricular systolic pressure and pulmonary arterial remodeling induced by hypoxia or monocrotaline and inhibited proliferation of pulmonary arterial smooth muscle cells (PASMCs). Increased expression of inflammatory cytokine mRNA and accumulation of leukocytes and T cells around the pulmonary arteries were suppressed with oxymatrine administration. Under hypoxic conditions, oxymatrine significantly upregulated Nrf2 and antioxidant protein SOD1 and HO-1 expression, but downregulated hydroperoxide levels in PASMCs. In summary, this study indicates that oxymatrine may prevent pulmonary hypertension through its antiproliferative, anti-inflammatory, and antioxidant effects, thus providing a promising pharmacological avenue for treating pulmonary hypertension.
Pulmonary Pharmacology & Therapeutics | 2011
Ying Luo; Bo Zhang; Dun-Quan Xu; Yi Liu; Ming-Qing Dong; Peng-Tao Zhao; Zhichao Li
Bicyclol is synthesized based on schisandrin, which is one of the main active components of Chinese herb Fructus Schisandrae. The purpose of this study is to investigate whether bicyclol has a beneficial effect on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Bicyclol was given to mice by gavage for three times. ALI was induced by vena caudalis injection of LPS. The last dose of bicyclol was administrated 1 h before LPS given. Mice in each group were sacrificed at different time point after LPS administration. As revealed by survival study, pretreatment with high doses of bicyclol reduced the mortality of mice from ALI. Bicyclol pretreatment significantly improved LPS-induced lung pathological changes, inhibited myeloperoxidase (MPO) activity, and reduced lung/body and lung wet/dry weight ratios. Bicyclol also inhibited the release of TNF-α, IL-1β and HMGB1, whereas simultaneously increased the expression of IL-10. Furthermore, the phosphorylation level of NF-κB p65 was markedly decreased by bicyclol. Taken together, our study showed that bicyclol improves survival rate and attenuates LPS-induced ALI. The protective mechanism may be due to the inhibition of NF-κB activation and regulation of cytokine secretion.