Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Duncan Young is active.

Publication


Featured researches published by Duncan Young.


The Lancet | 2005

Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial

Sheila Harvey; David A Harrison; Mervyn Singer; Joanne Ashcroft; Carys M. Jones; Diana Elbourne; William Brampton; Dewi Williams; Duncan Young; Kathryn M Rowan

BACKGROUND Over the past 30 years the pulmonary artery catheter (PAC) has become a widely used haemodynamic monitoring device in the management of critically ill patients, though doubts exist about its safety. Our aim was, therefore, to ascertain whether hospital mortality is reduced in critically ill patients when they are managed with a PAC. METHODS We did a randomised controlled trial to which we enrolled 1041 patients from 65 UK intensive care units. We assigned individuals to management with (n=519) or without (n=522) a PAC. The timing of insertion and subsequent clinical management were at the discretion of the treating clinician. Intensive care units decided a priori to have the option of using an alternative cardiac output-monitoring device in control patients. FINDINGS 1014 patients were eligible for analysis. We noted no difference in hospital mortality between patients managed with or without a PAC (68% [346 of 506] vs 66% [333 of 507], p=0.39; adjusted hazard ratio 1.09, 95% CI 0.94-1.27). We noted complications associated with insertion of a PAC in 46 of 486 individuals in whom the device was placed, none of which was fatal. INTERPRETATION Our findings indicate no clear evidence of benefit or harm by managing critically ill patients with a PAC. Efficacy studies are needed to ascertain whether management protocols involving PAC use can result in improved outcomes in specific groups if these devices are not to become a redundant technology.


Critical Care Medicine | 2003

Epidemiology of severe sepsis occurring in the first 24 hrs in intensive care units in england, Wales, and Northern Ireland

Andrew Padkin; Caroline Goldfrad; Anthony R. Brady; Duncan Young; Nick Black; Kathy Rowan

ObjectiveTo investigate the numbers, clinical characteristics, resource use, and outcomes of admissions who met precise clinical and physiologic criteria for severe sepsis (as defined in the PROWESS trial) in the first 24 hrs in the intensive care unit. DesignObservational cohort study, with retrospective analysis of prospectively collected data. SettingNinety-one adult general intensive care units in England, Wales, and Northern Ireland between 1995 and 2000. PatientsPatients were 56,673 adult admissions. InterventionsNone. Measurements and Main ResultsWe found that 27.1% of adult intensive care unit admissions met severe sepsis criteria in the first 24 hrs in the intensive care unit. Most were nonsurgical (67%), and the most common organ system dysfunctions were seen in the cardiovascular (88%) and respiratory (81%) systems. Modeling the data for England and Wales for 1997 suggested that 51 (95% confidence interval, 46–58) per 100,000 population per year were admitted to intensive care units and met severe sepsis criteria in the first 24 hrs.Of the intensive care unit admissions who met severe sepsis criteria in the first 24 hrs, 35% died before intensive care unit discharge and 47% died during their hospital stay. Hospital mortality rate ranged from 17% in the 16–19 age group to 64% in those >85 yrs. In England and Wales in 1997, an estimated 24 (95% confidence interval, 21–28) per 100,000 population per year died after intensive care unit admissions with severe sepsis in the first 24 hrs.For intensive care unit admissions who met severe sepsis criteria in the first 24 hrs, median intensive care unit length of stay was 3.56 days (interquartile range, 1.50–9.32) and median hospital length of stay was 18 days (interquartile range, 8–36 days). These admissions used 45% of the intensive care unit and 33% of the hospital bed days used by all intensive care unit admissions. ConclusionsSevere sepsis is common and presents a major challenge for clinicians, managers, and healthcare policymakers. Intensive care unit admissions meeting severe sepsis criteria have a high mortality rate and high resource use.


The New England Journal of Medicine | 2013

High-frequency oscillation for acute respiratory distress syndrome.

Duncan Young; Sarah E Lamb; Sanjoy Shah; Iain MacKenzie; William Tunnicliffe; Ranjit Lall; Kathy Rowan; Brian H. Cuthbertson

BACKGROUND Patients with the acute respiratory distress syndrome (ARDS) require mechanical ventilation to maintain arterial oxygenation, but this treatment may produce secondary lung injury. High-frequency oscillatory ventilation (HFOV) may reduce this secondary damage. METHODS In a multicenter study, we randomly assigned adults requiring mechanical ventilation for ARDS to undergo either HFOV with a Novalung R100 ventilator (Metran) or usual ventilatory care. All the patients had a ratio of the partial pressure of arterial oxygen (PaO) to the fraction of inspired oxygen (FiO) of 200 mm Hg (26.7 kPa) or less and an expected duration of ventilation of at least 2 days. The primary outcome was all-cause mortality 30 days after randomization. RESULTS There was no significant between-group difference in the primary outcome, which occurred in 166 of 398 patients (41.7%) in the HFOV group and 163 of 397 patients (41.1%) in the conventional-ventilation group (P=0.85 by the chi-square test). After adjustment for study center, sex, score on the Acute Physiology and Chronic Health Evaluation (APACHE) II, and the initial PaO:FiO ratio, the odds ratio for survival in the conventional-ventilation group was 1.03 (95% confidence interval, 0.75 to 1.40; P=0.87 by logistic regression). CONCLUSIONS The use of HFOV had no significant effect on 30-day mortality in patients undergoing mechanical ventilation for ARDS. (Funded by the National Institute for Health Research Health Technology Assessment Programme; OSCAR Current Controlled Trials number, ISRCTN10416500.).


American Journal of Respiratory and Critical Care Medicine | 2010

Beyond mortality: Future clinical research in acute lung injury

Roger G. Spragg; Gordon R. Bernard; William Checkley; J. Randall Curtis; Ognjen Gajic; Gordon H. Guyatt; Jesse B. Hall; Elliott Israel; Manu Jain; Dale M. Needham; Adrienne G. Randolph; Gordon D. Rubenfeld; David A. Schoenfeld; B. Taylor Thompson; Lorraine B. Ware; Duncan Young; Andrea L. Harabin

Mortality in National Heart, Lung and Blood Institute-sponsored clinical trials of treatments for acute lung injury (ALI) has decreased dramatically during the past two decades. As a consequence, design of such trials based on a mortality outcome requires ever-increasing numbers of patients. Recognizing that advances in clinical trial design might be applicable to these trials and might allow trials with fewer patients, the National Heart, Lung and Blood Institute convened a workshop of extramural experts from several disciplines. The workshop assessed the current state of clinical research addressing ALI, identified research needs, and recommended: (1) continued performance of trials evaluating treatments of patients with ALI; (2) development of strategies to perform ALI prevention trials; (3) observational studies of patients without ALI undergoing prolonged mechanical ventilation; and (4) development of a standardized format for reporting methods, endpoints, and results of ALI trials.


The Lancet | 2012

Effect of intravenous β-2 agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): a multicentre, randomised controlled trial

Fang Gao Smith; Gavin D. Perkins; Simon Gates; Duncan Young; Daniel F. McAuley; William Tunnicliffe; Zahid Khan; Sarah E Lamb

Summary Background In a previous randomised controlled phase 2 trial, intravenous infusion of salbutamol for up to 7 days in patients with acute respiratory distress syndrome (ARDS) reduced extravascular lung water and plateau airway pressure. We assessed the effects of this intervention on mortality in patients with ARDS. Methods We did a multicentre, placebo-controlled, parallel-group, randomised trial at 46 UK intensive-care units between December, 2006, and March, 2010. Intubated and mechanically ventilated patients (aged ≥16 years) within 72 h of ARDS onset were randomly assigned to receive either salbutamol (15 μg/kg ideal bodyweight per h) or placebo for up to 7 days. Randomisation was done by a central telephone or web-based randomisation service with minmisation by centre, pressure of arterial oxygen to fractional inspired oxygen concentration (PaO2/FIO2) ratio, and age. All participants, caregivers, and investigators were masked to group allocation. The primary outcome was death within 28 days of randomisation. Analysis was by intention-to-treat. This trial is registered, ISRCTN38366450 and EudraCT number 2006-002647-86. Findings We randomly assigned 162 patients to the salbutamol group and 164 to the placebo group. One patient in each group withdrew consent. Recruitment was stopped after the second interim analysis because of safety concerns. Salbutamol increased 28-day mortality (55 [34%] of 161 patients died in the salbutamol group vs 38 (23%) of 163 in the placebo group; risk ratio [RR] 1·47, 95% CI 1·03–2·08). Interpretation Treatment with intravenous salbutamol early in the course of ARDS was poorly tolerated. Treatment is unlikely to be beneficial, and could worsen outcomes. Routine use of β-2 agonist treatment in ventilated patients with this disorder cannot be recommended. Funding UK Medical Research Council, UK Department of Health, UK Intensive Care Foundation.


Nature Communications | 2016

MAIT cells are activated during human viral infections.

Bonnie van Wilgenburg; Iris Scherwitzl; Edward C. Hutchinson; Tianqi Leng; Ayako Kurioka; Corinna Kulicke; Catherine de Lara; Suzanne L. Cole; Sirijitt Vasanawathana; Wannee Limpitikul; Prida Malasit; Duncan Young; Laura Denney; Michael D. Moore; Paolo Fabris; Maria Teresa Giordani; Ye Htun Oo; Stephen M. Laidlaw; Lynn B. Dustin; Ling-Pei Ho; Fiona M. Thompson; Narayan Ramamurthy; Juthathip Mongkolsapaya; Christian B. Willberg; Gavin R. Screaton; Paul Klenerman

Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize bacterial ligands. Here, we demonstrate that MAIT cells are also activated during human viral infections in vivo. MAIT cells activation was observed during infection with dengue virus, hepatitis C virus and influenza virus. This activation—driving cytokine release and Granzyme B upregulation—is TCR-independent but dependent on IL-18 in synergy with IL-12, IL-15 and/or interferon-α/β. IL-18 levels and MAIT cell activation correlate with disease severity in acute dengue infection. Furthermore, HCV treatment with interferon-α leads to specific MAIT cell activation in vivo in parallel with an enhanced therapeutic response. Moreover, TCR-independent activation of MAIT cells leads to a reduction of HCV replication in vitro mediated by IFN-γ. Together these data demonstrate MAIT cells are activated following viral infections, and suggest a potential role in both host defence and immunopathology.


PLOS ONE | 2010

Reduction of Natural Killer but Not Effector CD8 T Lymphoyctes in Three Consecutive Cases of Severe/Lethal H1N1/09 Influenza A Virus Infection

Laura Denney; Celia Aitken; Chris Ka-fai Li; Eleri Wilson-Davies; Wai Ling Kok; Colin Clelland; Kevin Rooney; Duncan Young; Tao Dong; Andrew J. McMichael; William F. Carman; Ling-Pei Ho

Background The cause of severe disease in some patients infected with pandemic influenza A virus is unclear. Methodology/Principal Findings We present the cellular immunology profile in the blood, and detailed clinical (and post-mortem) findings of three patients with rapidly progressive infection, including a pregnant patient who died. The striking finding is of reduction in natural killer (NK) cells but preservation of activated effector CD8 T lymphocytes; with viraemia in the patient who had no NK cells. Comparison with control groups suggests that the reduction of NK cells is unique to these severely ill patients. Conclusion/Significance Our report shows markedly reduced NK cells in the three patients that we sampled and raises the hypothesis that NK may have a more significant role than T lymphocytes in controlling viral burden when the host is confronted with a new influenza A virus subtype.


Thorax | 2009

Survival and quality of life for patients with COPD or asthma admitted to intensive care in a UK multicentre cohort: the COPD and Asthma Outcome Study (CAOS)

M. Wildman; Colin Sanderson; J Groves; Barnaby C Reeves; Jon Ayres; David A Harrison; Duncan Young; Kathy Rowan

Background: Non-invasive ventilation is first-line treatment for patients with acutely decompensated chronic obstructive pulmonary disease (COPD), but endotracheal intubation, involving admission to an intensive care unit, may sometimes be required. Decisions to admit to an intensive care unit are commonly based on predicted survival and quality of life, but the information base for these decisions is limited and there is some evidence that clinicians tend to be pessimistic. This study examined the outcomes in patients with COPD admitted to the intensive care unit for decompensated type II respiratory failure. Methods: A prospective cohort study was carried out in 92 intensive care units and 3 respiratory high dependency units in the UK. Patients aged 45 years and older with breathlessness, respiratory failure or change in mental status due to an exacerbation of COPD, asthma or a combination of the two were recruited. Outcomes included survival and quality of life at 180 days. Results: Of the 832 patients recruited, 517 (62%) survived to 180 days. Of the survivors, 421 (81%) responded to a questionnaire. Of the respondents, 73% considered their quality of life to be the same as or better than it had been in the stable period before they were admitted, and 96% would choose similar treatment again. Function during the stable pre-admission period was a reasonable indicator of function reported by those who survived 180 days. Conclusions: Most patients with COPD who survive to 180 days after treatment in an intensive care unit have a heavy burden of symptoms, but almost all of them—including those who have been intubated—would want similar intensive care again under similar circumstances.


American Journal of Respiratory and Critical Care Medicine | 2012

High levels of virus-specific CD4+ T cells predict severe pandemic influenza A virus infection.

Yan Zhao; Yonghong Zhang; Laura Denney; Duncan Young; Tim Powell; Yanchun Peng; Ning Li; Huiping Yan; Dayan Wang; Yuelong Shu; Yvonne Kendrick; Andrew J. McMichael; Ling-Pei Ho; Tao Dong

RATIONALE T-cell responses have been implicated in control and exacerbation of lung injury during influenza A virus (IAV) infection. OBJECTIVES To examine the breadth and magnitude of influenza-specific CD4(+) and CD8(+) T-cell responses during acute phase of infection. METHODS Influenza-specific T-cell response to the entire pandemic H1N1/09 IAV proteome and T cell-related cytokine levels were measured in blood from previously healthy individuals with mild (n = 32) and severe (n = 16) IAV infection during the 2009 influenza pandemic. Virus-specific T-cell response in lung and blood was also performed in two acutely infected, severely ill patients using fluorescent-conjugated pdmH1N1/09 Matrix-MHC-I tetrameric complexes. MEASUREMENTS AND MAIN RESULTS Strong and broad CD4(+) but not CD8(+) T-cell responses were observed in the blood, and were higher in those with severe disease. Antigen-specific CD8(+) T cells in the lungs were on average 45-fold higher compared with blood in severely ill patients. Paradoxically, in patients with severe disease, IL-17, IL-2, IL-4, and IFN-γ levels were significantly decreased. CONCLUSIONS High levels of circulating virus-specific CD4(+) T cells to two viral internal proteins (nucleoprotein and matrix) in the first phase of infection are associated with subsequent development of severe IAV infection. This finding could be an early and specific marker for ensuing clinical deterioration. Contrasting levels of antigen-specific CD8(+) T cells in lungs and blood have implications on design and analysis of clinical trials for T-cell vaccines because measurements of T cells in the periphery may not reflect events in the lungs.


Health Technology Assessment | 2015

Rapid detection of health-care-associated bloodstream infection in critical care using multipathogen real-time polymerase chain reaction technology: a diagnostic accuracy study and systematic review.

Geoffrey Warhurst; Graham Dunn; Paul Chadwick; Bronagh Blackwood; Daniel F. McAuley; Gavin D. Perkins; Ronan McMullan; Simon Gates; Andrew Bentley; Duncan Young; Gordon L Carlson; Paul Dark

BACKGROUND There is growing interest in the potential utility of real-time polymerase chain reaction (PCR) in diagnosing bloodstream infection by detecting pathogen deoxyribonucleic acid (DNA) in blood samples within a few hours. SeptiFast (Roche Diagnostics GmBH, Mannheim, Germany) is a multipathogen probe-based system targeting ribosomal DNA sequences of bacteria and fungi. It detects and identifies the commonest pathogens causing bloodstream infection. As background to this study, we report a systematic review of Phase III diagnostic accuracy studies of SeptiFast, which reveals uncertainty about its likely clinical utility based on widespread evidence of deficiencies in study design and reporting with a high risk of bias. OBJECTIVE Determine the accuracy of SeptiFast real-time PCR for the detection of health-care-associated bloodstream infection, against standard microbiological culture. DESIGN Prospective multicentre Phase III clinical diagnostic accuracy study using the standards for the reporting of diagnostic accuracy studies criteria. SETTING Critical care departments within NHS hospitals in the north-west of England. PARTICIPANTS Adult patients requiring blood culture (BC) when developing new signs of systemic inflammation. MAIN OUTCOME MEASURES SeptiFast real-time PCR results at species/genus level compared with microbiological culture in association with independent adjudication of infection. Metrics of diagnostic accuracy were derived including sensitivity, specificity, likelihood ratios and predictive values, with their 95% confidence intervals (CIs). Latent class analysis was used to explore the diagnostic performance of culture as a reference standard. RESULTS Of 1006 new patient episodes of systemic inflammation in 853 patients, 922 (92%) met the inclusion criteria and provided sufficient information for analysis. Index test assay failure occurred on 69 (7%) occasions. Adult patients had been exposed to a median of 8 days (interquartile range 4-16 days) of hospital care, had high levels of organ support activities and recent antibiotic exposure. SeptiFast real-time PCR, when compared with culture-proven bloodstream infection at species/genus level, had better specificity (85.8%, 95% CI 83.3% to 88.1%) than sensitivity (50%, 95% CI 39.1% to 60.8%). When compared with pooled diagnostic metrics derived from our systematic review, our clinical study revealed lower test accuracy of SeptiFast real-time PCR, mainly as a result of low diagnostic sensitivity. There was a low prevalence of BC-proven pathogens in these patients (9.2%, 95% CI 7.4% to 11.2%) such that the post-test probabilities of both a positive (26.3%, 95% CI 19.8% to 33.7%) and a negative SeptiFast test (5.6%, 95% CI 4.1% to 7.4%) indicate the potential limitations of this technology in the diagnosis of bloodstream infection. However, latent class analysis indicates that BC has a low sensitivity, questioning its relevance as a reference test in this setting. Using this analysis approach, the sensitivity of the SeptiFast test was low but also appeared significantly better than BC. Blood samples identified as positive by either culture or SeptiFast real-time PCR were associated with a high probability (> 95%) of infection, indicating higher diagnostic rule-in utility than was apparent using conventional analyses of diagnostic accuracy. CONCLUSION SeptiFast real-time PCR on blood samples may have rapid rule-in utility for the diagnosis of health-care-associated bloodstream infection but the lack of sensitivity is a significant limiting factor. Innovations aimed at improved diagnostic sensitivity of real-time PCR in this setting are urgently required. Future work recommendations include technology developments to improve the efficiency of pathogen DNA extraction and the capacity to detect a much broader range of pathogens and drug resistance genes and the application of new statistical approaches able to more reliably assess test performance in situation where the reference standard (e.g. blood culture in the setting of high antimicrobial use) is prone to error. STUDY REGISTRATION The systematic review is registered as PROSPERO CRD42011001289. FUNDING The National Institute for Health Research Health Technology Assessment programme. Professor Daniel McAuley and Professor Gavin D Perkins contributed to the systematic review through their funded roles as codirectors of the Intensive Care Foundation (UK).

Collaboration


Dive into the Duncan Young's collaboration.

Top Co-Authors

Avatar

Daniel F. McAuley

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Andrew Bentley

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Gordon L Carlson

Salford Royal NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Graham Dunn

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Paul Chadwick

University College London

View shared research outputs
Top Co-Authors

Avatar

Paul Dark

Manchester Academic Health Science Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bronagh Blackwood

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge