Dung Fang Lee
Icahn School of Medicine at Mount Sinai
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dung Fang Lee.
Nature | 2010
Xonia Carvajal-Vergara; Ana Sevilla; Sunita L. D'Souza; Yen Sin Ang; Christoph Schaniel; Dung Fang Lee; Lei Yang; Aaron D. Kaplan; Eric D. Adler; Roye Rozov; Yongchao Ge; Ninette Cohen; Lisa Edelmann; Betty Y. Chang; Avinash Waghray; Jie Su; Sherly Pardo; Klaske D. Lichtenbelt; Marco Tartaglia; Bruce D. Gelb; Ihor R. Lemischka
The generation of reprogrammed induced pluripotent stem cells (iPSCs) from patients with defined genetic disorders holds the promise of increased understanding of the aetiologies of complex diseases and may also facilitate the development of novel therapeutic interventions. We have generated iPSCs from patients with LEOPARD syndrome (an acronym formed from its main features; that is, lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonary valve stenosis, abnormal genitalia, retardation of growth and deafness), an autosomal-dominant developmental disorder belonging to a relatively prevalent class of inherited RAS–mitogen-activated protein kinase signalling diseases, which also includes Noonan syndrome, with pleomorphic effects on several tissues and organ systems. The patient-derived cells have a mutation in the PTPN11 gene, which encodes the SHP2 phosphatase. The iPSCs have been extensively characterized and produce multiple differentiated cell lineages. A major disease phenotype in patients with LEOPARD syndrome is hypertrophic cardiomyopathy. We show that in vitro-derived cardiomyocytes from LEOPARD syndrome iPSCs are larger, have a higher degree of sarcomeric organization and preferential localization of NFATC4 in the nucleus when compared with cardiomyocytes derived from human embryonic stem cells or wild-type iPSCs derived from a healthy brother of one of the LEOPARD syndrome patients. These features correlate with a potential hypertrophic state. We also provide molecular insights into signalling pathways that may promote the disease phenotype.
Cell | 2007
Dung Fang Lee; Hsu Ping Kuo; Chun Te Chen; Jung Mao Hsu; Chao Kai Chou; Yongkun Wei; Hui Lung Sun; Long Yuan Li; Bo Ping; Wei Chien Huang; Xianghuo He; Jen Yu Hung; Chien-Chen Lai; Qingqing Ding; Jen Liang Su; Jer Yen Yang; Aysegul A. Sahin; Gabriel N. Hortobagyi; Fuu Jen Tsai; Chang Hai Tsai; Mien Chie Hung
TNFalpha has recently emerged as a regulator linking inflammation to cancer pathogenesis, but the detailed cellular and molecular mechanisms underlying this link remain to be elucidated. The tuberous sclerosis 1 (TSC1)/TSC2 tumor suppressor complex serves as a repressor of the mTOR pathway, and disruption of TSC1/TSC2 complex function may contribute to tumorigenesis. Here we show that IKKbeta, a major downstream kinase in the TNFalpha signaling pathway, physically interacts with and phosphorylates TSC1 at Ser487 and Ser511, resulting in suppression of TSC1. The IKKbeta-mediated TSC1 suppression activates the mTOR pathway, enhances angiogenesis, and results in tumor development. We further find that expression of activated IKKbeta is associated with TSC1 Ser511 phosphorylation and VEGF production in multiple tumor types and correlates with poor clinical outcome of breast cancer patients. Our findings identify a pathway that is critical for inflammation-mediated tumor angiogenesis and may provide a target for clinical intervention in human cancer.
Nature Cell Biology | 2008
Jer Yen Yang; Cong S. Zong; Weiya Xia; Hirohito Yamaguchi; Qingqing Ding; Xiaoming Xie; Jing Yu Lang; Chien-Chen Lai; Chun-Ju Chang; Wei Chien Huang; Hsin Huang; Hsu Ping Kuo; Dung Fang Lee; Long Yuan Li; Huang-Chun Lien; Xiaoyun Cheng; King-Jen Chang; Chwan-Deng Hsiao; Fuu Jen Tsai; Chang Hai Tsai; Aysegul A. Sahin; William J. Muller; Gordon B. Mills; Dihua Yu; Gabriel N. Hortobagyi; Mien Chie Hung
The RAS–ERK pathway is known to play a pivotal role in differentiation, proliferation and tumour progression. Here, we show that Erk downregulates Forkhead box O 3a (FOXO3a) by directly interacting with and phosphorylating FOXO3a at Ser 294, Ser 344 and Ser 425, which consequently promotes cell proliferation and tumorigenesis. The ERK-phosphorylated FOXO3a degrades via an MDM2-mediated ubiquitin-proteasome pathway. However, the non-phosphorylated FOXO3a mutant is resistant to the interaction and degradation by murine double minute 2 (MDM2), thereby resulting in a strong inhibition of cell proliferation and tumorigenicity. Taken together, our study elucidates a novel pathway in cell growth and tumorigenesis through negative regulation of FOXO3a by RAS–ERK and MDM2.
Molecular and Cellular Biology | 2007
Qingqing Ding; Xianghuo He; Jung Mao Hsu; Weiya Xia; Chun Te Chen; Long Yuan Li; Dung Fang Lee; Jaw Ching Liu; Qing Zhong; Xiaodong Wang; Mien Chie Hung
ABSTRACT Apoptosis is critical for embryonic development, tissue homeostasis, and tumorigenesis and is determined largely by the Bcl-2 family of antiapoptotic and prosurvival regulators. Here, we report that glycogen synthase kinase 3 (GSK-3) was required for Mcl-1 degradation, and we identified a novel mechanism for proteasome-mediated Mcl-1 turnover in which GSK-3β associates with and phosphorylates Mcl-1 at one consensus motif (155STDG159SLPS163T; phosphorylation sites are in italics), which will lead to the association of Mcl-1 with the E3 ligase β-TrCP, and β-TrCP then facilitates the ubiquitination and degradation of phosphorylated Mcl-1. A variant of Mcl-1 (Mcl-1-3A), which abolishes the phosphorylations by GSK-3β and then cannot be ubiquitinated by β-TrCP, is much more stable than wild-type Mcl-1 and able to block the proapoptotic function of GSK-3β and enhance chemoresistance. Our results indicate that the turnover of Mcl-1 by β-TrCP is an essential mechanism for GSK-3β-induced apoptosis and contributes to GSK-3β-mediated tumor suppression and chemosensitization.
Cancer Cell | 2012
Jianhua Ling; Ya'an Kang; Ruiying Zhao; Qianghua Xia; Dung Fang Lee; Zhe Chang; Jin Li; Bailu Peng; Jason B. Fleming; Huamin Wang; Jinsong Liu; Ihor R. Lemischka; Mien Chie Hung; Paul J. Chiao
Constitutive Kras and NF-κB activation is identified as signature alterations in pancreatic ductal adenocarcinoma (PDAC). However, how NF-κB is activated in PDAC is not yet understood. Here, we report that pancreas-targeted IKK2/β inactivation inhibited NF-κB activation and PDAC development in Kras(G12D) and Kras(G12D);Ink4a/Arf(F/F) mice, demonstrating a mechanistic link between IKK2/β and Kras(G12D) in PDAC inception. Our findings reveal that Kras(G12D)-activated AP-1 induces IL-1α, which, in turn, activates NF-κB and its target genes IL-1α and p62, to initiate IL-1α/p62 feedforward loops for inducing and sustaining NF-κB activity. Furthermore, IL-1α overexpression correlates with Kras mutation, NF-κB activity, and poor survival in PDAC patients. Therefore, our findings demonstrate the mechanism by which IKK2/β/NF-κB is activated by Kras(G12D) through dual feedforward loops of IL-1α/p62.
Molecular and Cellular Biology | 2005
Dipak K. Giri; Mohamed Ali-Seyed; Long Yuan Li; Dung Fang Lee; Pin Ling; Geoffrey Bartholomeusz; Shao Chun Wang; Mien Chie Hung
ABSTRACT The cell membrane receptor ErbB-2 migrates to the nucleus. However, the mechanism of its nuclear translocation is unclear. Here, we report a novel mechanism of its nuclear localization that involves interaction with the transport receptor importin β1, nuclear pore protein Nup358, and a host of players in endocytic internalization. Knocking down importin β1 using small interfering RNA oligonucleotides or inactivation of small GTPase Ran by RanQ69L, a dominant-negative mutant of Ran, causes a nuclear transport defect of ErbB-2. Mutation of a putative nuclear localization signal in ErbB-2 destroys its interaction with importin β1 and arrests nuclear translocation, while inactivation of nuclear export receptor piles up ErbB-2 within the nucleus. Additionally, blocking of internalization by a dominant-negative mutant of dynamin halts its nuclear localization. Thus, the cell membrane-embedded ErbB-2, through endocytosis using the endocytic vesicle as a vehicle, importin β1 as a driver and Nup358 as a traffic light, migrates from the cell surface to the nucleus. This novel mechanism explains how a receptor tyrosine kinase on the cell surface can be translocated into the nucleus. This pathway may serve as a general mechanism to allow direct communication between cell surface receptors and the nucleus, and our findings thus open a new era in understanding direct trafficking between the cell membrane and nucleus.
Cancer Cell | 2012
Yan Wang; Qingqing Ding; Chia Jui Yen; Weiya Xia; Julie Izzo; Jing Yu Lang; Chia Wei Li; Jennifer L. Hsu; Stephanie A. Miller; Xuemei Wang; Dung Fang Lee; Jung Mao Hsu; Longfei Huo; Adam M. LaBaff; Dongping Liu; Tzu Hsuan Huang; Chien-Chen Lai; Fuu Jen Tsai; Wei Chao Chang; Chung-Hsuan Chen; Tsung Teh Wu; Navtej Buttar; Kenneth K. Wang; Yun Wu; Huamin Wang; Jaffer A. Ajani; Mien Chie Hung
Esophageal adenocarcinoma (EAC) is the most prevalent esophageal cancer type in the United States. The TNF-α/mTOR pathway is known to mediate the development of EAC. Additionally, aberrant activation of Gli1, downstream effector of the Hedgehog (HH) pathway, has been observed in EAC. In this study, we found that an activated mTOR/S6K1 pathway promotes Gli1 transcriptional activity and oncogenic function through S6K1-mediated Gli1 phosphorylation at Ser84, which releases Gli1 from its endogenous inhibitor, SuFu. Moreover, elimination of S6K1 activation by an mTOR pathway inhibitor enhances the killing effects of the HH pathway inhibitor. Together, our results established a crosstalk between the mTOR/S6K1 and HH pathways, which provides a mechanism for SMO-independent Gli1 activation and also a rationale for combination therapy for EAC.
Clinical Cancer Research | 2004
Weiya Xia; Jin-Shing Chen; Xian Zhou; Pei Rong Sun; Dung Fang Lee; Yong Liao; Binhua P. Zhou; Mien Chie Hung
Purpose: The diversity of biological functions makes p21Cip1/WAF1 (p21) a controversial marker in predicting the prognosis of breast cancer patients. Recent laboratory studies revealed that the regulation of p21 function could be related to different subcellular localizations of p21 by Akt-induced phosphorylation at threonine 145 in HER2/neu-overexpressing breast cancer cells. The purpose of this study was to verify these findings in clinical settings. Experimental Design: The expression status of the key biological markers in the HER2/neu-Akt-p21 pathway in 130 breast cancer specimens was evaluated by immunohistochemical staining and correlated with patients’ clinical parameters and survival. In addition, an antibody against phospho-p21 at threonine 145 [phospho-p21 (T145)] was also used for better validation of these findings. Results: Cytoplasmic localization of p21 is highly correlated with overexpression of phospho-p21 (T145). Both cytoplasmic p21 and overexpression of phospho-p21 (T145) are associated with high expression of HER2/neu and phospho-Akt. Cytoplasmic localization of p21 and overexpression of phospho-p21 (T145), HER2/neu, and phospho-Akt are all associated with worse overall survival. Multivariate analysis of the Cox proportional hazard regression model revealed that cytoplasmic p21 and overexpression of HER2/neu are independently associated with increased risk of death. Combining these two factors stratified patients’ survival into four distinct groups, with a 5-year survival rate of 79% in low HER2/neu and negative/nuclear p21 patients, 60% in high HER2/neu and negative/nuclear p21 patients, 29% in low HER2/neu and cytoplasmic p21 patients, and 16% in high HER2/neu and cytoplasmic p21 patients. Conclusions: The present study, in addition to supporting the mechanisms of p21 regulation derived from laboratory investigation, demonstrates the prognostic importance of phospho-p21 (T145) for the first time and also provides a novel combination of p21 and HER2/neu for better stratification of patients’ survival than any single clinicopathological or biological marker that may play important diagnostic and therapeutic roles for breast cancer patients.
Molecular Cell | 2009
Dung Fang Lee; Hsu Ping Kuo; Mo Liu; Chao Kai Chou; Weiya Xia; Yi Du; Jia Shen; Chun Te Chen; Longfei Huo; Ming Chuan Hsu; Chia Wei Li; Qingqing Ding; Tsai Lien Liao; Chien-Chen Lai; Ann Chi Lin; Ya Hui Chang; Shih-Feng Tsai; Long Yuan Li; Mien Chie Hung
IkappaB kinase beta (IKKbeta) is involved in tumor development and progression through activation of the nuclear factor (NF)-kappaB pathway. However, the molecular mechanism that regulates IKKbeta degradation remains largely unknown. Here, we show that a Cullin 3 (CUL3)-based ubiquitin ligase, Kelch-like ECH-associated protein 1 (KEAP1), is responsible for IKKbeta ubiquitination. Depletion of KEAP1 led to the accumulation and stabilization of IKKbeta and to upregulation of NF-kappaB-derived tumor angiogenic factors. A systematic analysis of the CUL3, KEAP1, and RBX1 genomic loci revealed a high percentage of genome loss and missense mutations in human cancers that failed to facilitate IKKbeta degradation. Our results suggest that the dysregulation of KEAP1-mediated IKKbeta ubiquitination may contribute to tumorigenesis.
Cancer Research | 2008
Qingqing Ding; Longfei Huo; Jer Yen Yang; Weiya Xia; Yongkun Wei; Yong Liao; Chun-Ju Chang; Yan Yang; Chien-Chen Lai; Dung Fang Lee; Chia Jui Yen; Yun Ju Rita Chen; Jung Mao Hsu; Hsu Ping Kuo; Chun Yi Lin; Fuu Jen Tsai; Long Yuan Li; Chang Hai Tsai; Mien Chie Hung
Myeloid cell leukemia-1 (Mcl-1), a Bcl-2-like antiapoptotic protein, plays a role in cell immortalization and chemoresistance in a number of human malignancies. A peptidyl-prolyl cis/trans isomerase, Pin1 is involved in many cellular events, such as cell cycle progression, cell proliferation, and differentiation through isomerizing prophosphorylated substrates. It has been reported that down-regulation of Pin1 induces apoptosis, and that Erk phosphorylates and up-regulates Mcl-1; however, the underlying mechanisms for the two phenomena are not clear yet. Here, we showed that Pin 1 stabilizes Mcl-1, which is required for Mcl-1 posphorylation by Erk. First, we found expression of Mcl-1 and Pin1 were positively correlated and associated with poor survival in human breast cancer. We then showed that Erk could phosphorylate Mcl-1 at two consensus residues, Thr 92 and 163, which is required for the association of Mcl-1 and Pin1, resulting in stabilization of Mcl-1. Moreover, Pin1 is also required for the up-regulation of Mcl-1 by Erk activation. Based on this newly identified mechanism of Mcl-1 stabilization, two strategies were used to overcome Mcl-1-mediated chemoresistance: inhibiting Erk by Sorafenib, an approved clinical anticancer drug, or knocking down Pin1 by using a SiRNA technique. In conclusion, the current report not only unravels a novel mechanism to link Erk/Pin1 pathway and Mcl-1-mediated chemoresistance but also provides a plausible combination therapy, Taxol (Paclitaxel) plus Sorafenib, which was shown to be effective in killing breast cancer cells.