Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ihor R. Lemischka is active.

Publication


Featured researches published by Ihor R. Lemischka.


Science | 2006

Stem cells and their niches.

Kateri Moore; Ihor R. Lemischka

A constellation of intrinsic and extrinsic cellular mechanisms regulates the balance of self-renewal and differentiation in all stem cells. Stem cells, their progeny, and elements of their microenvironment make up an anatomical structure that coordinates normal homeostatic production of functional mature cells. Here we discuss the stem cell niche concept, highlight recent progress, and identify important unanswered questions. We focus on three mammalian stem cell systems where large numbers of mature cells must be continuously produced throughout adult life: intestinal epithelium, epidermal structures, and bone marrow.


Nature | 2006

Dissecting self-renewal in stem cells with RNA interference

Natalia B. Ivanova; Radu Dobrin; Rong Lu; Iulia Kotenko; John M. Levorse; Christina DeCoste; Xenia Schafer; Yi Lun; Ihor R. Lemischka

We present an integrated approach to identify genetic mechanisms that control self-renewal in mouse embryonic stem cells. We use short hairpin RNA (shRNA) loss-of-function techniques to downregulate a set of gene products whose expression patterns suggest self-renewal regulatory functions. We focus on transcriptional regulators and identify seven genes for which shRNA-mediated depletion negatively affects self-renewal, including four genes with previously unrecognized roles in self-renewal. Perturbations of these gene products are combined with dynamic, global analyses of gene expression. Our studies suggest specific biological roles for these molecules and reveal the complexity of cell fate regulation in embryonic stem cells.


Cell | 1991

A receptor tyrosine kinase specific to hematopoietic stem and progenitor cell-enriched populations

William Matthews; Craig T. Jordan; Gordon W. Wiegand; Drew M. Pardoll; Ihor R. Lemischka

To elucidate the molecular biology of the hematopoietic stem cell, we have begun to isolate genes from murine cell populations enriched in stem cell activity. One such cDNA encodes a novel receptor tyrosine kinase, designated fetal liver kinase-2 or flk-2, which is related to the W locus gene product c-kit. Expression analyses suggest an extremely restricted distribution of flk-2. It is expressed in populations enriched for stem cells and primitive uncommitted progenitors, and is absent in populations containing more mature cells. Therefore, this receptor may be a key signal transducing component in the totipotent hematopoietic stem cell and its immediate self-renewing progeny.


Nature | 2010

Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome

Xonia Carvajal-Vergara; Ana Sevilla; Sunita L. D'Souza; Yen Sin Ang; Christoph Schaniel; Dung Fang Lee; Lei Yang; Aaron D. Kaplan; Eric D. Adler; Roye Rozov; Yongchao Ge; Ninette Cohen; Lisa Edelmann; Betty Y. Chang; Avinash Waghray; Jie Su; Sherly Pardo; Klaske D. Lichtenbelt; Marco Tartaglia; Bruce D. Gelb; Ihor R. Lemischka

The generation of reprogrammed induced pluripotent stem cells (iPSCs) from patients with defined genetic disorders holds the promise of increased understanding of the aetiologies of complex diseases and may also facilitate the development of novel therapeutic interventions. We have generated iPSCs from patients with LEOPARD syndrome (an acronym formed from its main features; that is, lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonary valve stenosis, abnormal genitalia, retardation of growth and deafness), an autosomal-dominant developmental disorder belonging to a relatively prevalent class of inherited RAS–mitogen-activated protein kinase signalling diseases, which also includes Noonan syndrome, with pleomorphic effects on several tissues and organ systems. The patient-derived cells have a mutation in the PTPN11 gene, which encodes the SHP2 phosphatase. The iPSCs have been extensively characterized and produce multiple differentiated cell lineages. A major disease phenotype in patients with LEOPARD syndrome is hypertrophic cardiomyopathy. We show that in vitro-derived cardiomyocytes from LEOPARD syndrome iPSCs are larger, have a higher degree of sarcomeric organization and preferential localization of NFATC4 in the nucleus when compared with cardiomyocytes derived from human embryonic stem cells or wild-type iPSCs derived from a healthy brother of one of the LEOPARD syndrome patients. These features correlate with a potential hypertrophic state. We also provide molecular insights into signalling pathways that may promote the disease phenotype.


Immunity | 1995

Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors

Katrin Mackarehtschian; Jeff D. Hardin; Katrd A. Moore; Sharon Boast; Stephen P. Goff; Ihor R. Lemischka

The flk2 receptor tyrosine kinase has been implicated in hematopoietic development. Mice deficient in flk2 were generated. Mutants developed into healthy adults with normal mature hematopoietic populations. However, they possessed specific deficiencies in primitive B lymphoid progenitors. Bone marrow transplantation experiments revealed a further deficiency in T cell and myeloid reconstitution by mutant stem cells. Mice deficient for both c-kit and flk2 exhibited a more severe phenotype characterized by large overall decreases in hematopoietic cell numbers, further reductions in the relative frequencies of lymphoid progenitors, and a postnatal lethality. Taken together, the data suggest that flk2 plays a role both in multipotent stem cells and in lymphoid differentiation.


Nature Neuroscience | 2006

The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells

Qin Shen; Yue Wang; John T. Dimos; Christopher A. Fasano; Timothy N. Phoenix; Ihor R. Lemischka; Natalia B. Ivanova; Stefano Stifani; Edward E. Morrisey; Sally Temple

In the developing cerebral cortex, neurons are born on a predictable schedule. Here we show in mice that the essential timing mechanism is programmed within individual progenitor cells, and its expression depends solely on cell-intrinsic and environmental factors generated within the clonal lineage. Multipotent progenitor cells undergo repeated asymmetric divisions, sequentially generating neurons in their normal in vivo order: first preplate cells, including Cajal-Retzius neurons, then deep and finally superficial cortical plate neurons. As each cortical layer arises, stem cells and neuroblasts become restricted from generating earlier-born neuron types. Growth as neurospheres or in co-culture with younger cells did not restore their plasticity. Using short-hairpin RNA (shRNA) to reduce Foxg1 expression reset the timing of mid- but not late-gestation progenitors, allowing them to remake preplate neurons and then cortical-plate neurons. Our data demonstrate that neural stem cells change neuropotency during development and have a window of plasticity when restrictions can be reversed.


Cell | 1990

Cellular and developmental properties of fetal hematopoietic stem cells

Craig T. Jordan; John P. McKearn; Ihor R. Lemischka

We have characterized the fetal totipotent hematopoietic stem cell using a novel strategy that integrates physical analysis of cell properties and genetic analysis of in vivo developmental behavior. This approach allows the simultaneous isolation and in vivo characterization of any stem cell population. Using this procedure we demonstrate that a cell surface marker, recognized by monoclonal antibody AA4.1, defines 0.5%-1.0% of fetal liver tissue that contains the entire hierarchy of primitive hematopoietic cells. The AA4.1+ subpopulation includes multipotential in vitro progenitors, CFU-S cells, and lymphoid-myeloid stem cells that function to yield permanent and oligoclonal blood systems. Further fractionation of these cells by analysis of density, fibronectin binding, and surface antigen distribution has defined 0.1%-0.2% of fetal liver that contains the totipotent stem cell.


Cell Stem Cell | 2007

shRNA Knockdown of Bmi-1 Reveals a Critical Role for p21-Rb Pathway in NSC Self-Renewal during Development

Christopher A. Fasano; John T. Dimos; Natalia B. Ivanova; Natalia Lowry; Ihor R. Lemischka; Sally Temple

Knockout studies have shown that the polycomb gene Bmi-1 is important for postnatal, but not embryonic, neural stem cell (NSC) self-renewal and have identified the cell-cycle inhibitors p16/p19 as molecular targets. Here, using lentiviral-delivered shRNAs in vitro and in vivo, we determined that Bmi-1 is also important for NSC self-renewal in the embryo. We found that neural progenitors depend increasingly on Bmi-1 for proliferation as development proceeds from embryonic through adult stages. Acute shRNA-mediated Bmi-1 reduction causes defects in embryonic and adult NSC proliferation and self-renewal that, unexpectedly, are mediated by a different cell-cycle inhibitor, p21. Gene array analyses revealed developmental differences in Bmi-1-controlled expression of genes in the p21-Rb cell cycle regulatory pathway. Our data therefore implicate p21 as an important Bmi-1 target in NSCs, potentially with stage-related differences. Understanding stage-related mechanisms underlying NSC self-renewal has important implications for development of stem cell-based therapies.


Cancer Cell | 2012

KrasG12D-Induced IKK2/β/NF-κB Activation by IL-1α and p62 Feedforward Loops Is Required for Development of Pancreatic Ductal Adenocarcinoma

Jianhua Ling; Ya'an Kang; Ruiying Zhao; Qianghua Xia; Dung Fang Lee; Zhe Chang; Jin Li; Bailu Peng; Jason B. Fleming; Huamin Wang; Jinsong Liu; Ihor R. Lemischka; Mien Chie Hung; Paul J. Chiao

Constitutive Kras and NF-κB activation is identified as signature alterations in pancreatic ductal adenocarcinoma (PDAC). However, how NF-κB is activated in PDAC is not yet understood. Here, we report that pancreas-targeted IKK2/β inactivation inhibited NF-κB activation and PDAC development in Kras(G12D) and Kras(G12D);Ink4a/Arf(F/F) mice, demonstrating a mechanistic link between IKK2/β and Kras(G12D) in PDAC inception. Our findings reveal that Kras(G12D)-activated AP-1 induces IL-1α, which, in turn, activates NF-κB and its target genes IL-1α and p62, to initiate IL-1α/p62 feedforward loops for inducing and sustaining NF-κB activity. Furthermore, IL-1α overexpression correlates with Kras mutation, NF-κB activity, and poor survival in PDAC patients. Therefore, our findings demonstrate the mechanism by which IKK2/β/NF-κB is activated by Kras(G12D) through dual feedforward loops of IL-1α/p62.


Nature Biotechnology | 2011

Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells

Michael D. Green; Antonia Chen; Maria Cristina Nostro; Sunita L. D'Souza; Christoph Schaniel; Ihor R. Lemischka; Valerie Gouon-Evans; Gordon Keller; Hans-Willem Snoeck

Directed differentiation of human embryonic stem (hES) cells and human induced pluripotent stem (hiPS) cells captures in vivo developmental pathways for specifying lineages in vitro, thus avoiding perturbation of the genome with exogenous genetic material. Thus far, derivation of endodermal lineages has focused predominantly on hepatocytes, pancreatic endocrine cells and intestinal cells. The ability to differentiate pluripotent cells into anterior foregut endoderm (AFE) derivatives would expand their utility for cell therapy and basic research to tissues important for immune function, such as the thymus; for metabolism, such as thyroid and parathyroid; and for respiratory function, such as trachea and lung. We find that dual inhibition of transforming growth factor (TGF)-β and bone morphogenic protein (BMP) signaling after specification of definitive endoderm from pluripotent cells results in a highly enriched AFE population that is competent to be patterned along dorsoventral and anteroposterior axes. These findings provide an approach for the generation of AFE derivatives.

Collaboration


Dive into the Ihor R. Lemischka's collaboration.

Top Co-Authors

Avatar

Kateri Moore

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Christoph Schaniel

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Dung Fang Lee

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Dmitri Papatsenko

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Carlos Filipe Pereira

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jie Su

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ana Sevilla

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Avi Ma'ayan

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Betty Y. Chang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge