Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Duofang Chen is active.

Publication


Featured researches published by Duofang Chen.


Optics Express | 2010

Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method

Xiaowei He; Jimin Liang; Xiaorui Wang; Jingjing Yu; Xiaochao Qu; Xiaodong Wang; Yanbin Hou; Duofang Chen; Fang Liu; Jie Tian

In this paper, we present an incomplete variables truncated conjugate gradient (IVTCG) method for bioluminescence tomography (BLT). Considering the sparse characteristic of the light source and insufficient surface measurement in the BLT scenarios, we combine a sparseness-inducing (ℓ1 norm) regularization term with a quadratic error term in the IVTCG-based framework for solving the inverse problem. By limiting the number of variables updated at each iterative and combining a variable splitting strategy to find the search direction more efficiently, it obtains fast and stable source reconstruction, even without a priori information of the permissible source region and multispectral measurements. Numerical experiments on a mouse atlas validate the effectiveness of the method. In vivo mouse experimental results further indicate its potential for a practical BLT system.


Optics Express | 2010

In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models

Junting Liu; Yabin Wang; Xiaochao Qu; Xiangsi Li; Xiaopeng Ma; Runqiang Han; Zhenhua Hu; Xueli Chen; Dongdong Sun; Rongqing Zhang; Duofang Chen; Dan Chen; Xiaoyuan Chen; Jimin Liang; Feng Cao; Jie Tian

Bioluminescence tomography (BLT) is a new optical molecular imaging modality, which can monitor both physiological and pathological processes by using bioluminescent light-emitting probes in small living animal. Especially, this technology possesses great potential in drug development, early detection, and therapy monitoring in preclinical settings. In the present study, we developed a dual modality BLT prototype system with Micro-computed tomography (MicroCT) registration approach, and improved the quantitative reconstruction algorithm based on adaptive hp finite element method (hp-FEM). Detailed comparisons of source reconstruction between the heterogeneous and homogeneous mouse models were performed. The models include mice with implanted luminescence source and tumor-bearing mice with firefly luciferase report gene. Our data suggest that the reconstruction based on heterogeneous mouse model is more accurate in localization and quantification than the homogeneous mouse model with appropriate optical parameters and that BLT allows super-early tumor detection in vivo based on tomographic reconstruction of heterogeneous mouse model signal.


Medical Physics | 2013

Cone beam x-ray luminescence computed tomography: A feasibility study

Dongmei Chen; Shouping Zhu; Huangjian Yi; Xianghan Zhang; Duofang Chen; Jimin Liang; Jie Tian

PURPOSE The appearance of x-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging by x ray. In the previous XLCT system, the sample was irradiated by a sequence of narrow x-ray beams and the x-ray luminescence was measured by a highly sensitive charge coupled device (CCD) camera. This resulted in a relatively long sampling time and relatively low utilization of the x-ray beam. In this paper, a novel cone beam x-ray luminescence computed tomography strategy is proposed, which can fully utilize the x-ray dose and shorten the scanning time. The imaging model and reconstruction method are described. The validity of the imaging strategy has been studied in this paper. METHODS In the cone beam XLCT system, the cone beam x ray was adopted to illuminate the sample and a highly sensitive CCD camera was utilized to acquire luminescent photons emitted from the sample. Photons scattering in biological tissues makes it an ill-posed problem to reconstruct the 3D distribution of the x-ray luminescent sample in the cone beam XLCT. In order to overcome this issue, the authors used the diffusion approximation model to describe the photon propagation in tissues, and employed the sparse regularization method for reconstruction. An incomplete variables truncated conjugate gradient method and permissible region strategy were used for reconstruction. Meanwhile, traditional x-ray CT imaging could also be performed in this system. The x-ray attenuation effect has been considered in their imaging model, which is helpful in improving the reconstruction accuracy. RESULTS First, simulation experiments with cylinder phantoms were carried out to illustrate the validity of the proposed compensated method. The experimental results showed that the location error of the compensated algorithm was smaller than that of the uncompensated method. The permissible region strategy was applied and reduced the reconstruction error to less than 2 mm. The robustness and stability were then evaluated from different view numbers, different regularization parameters, different measurement noise levels, and optical parameters mismatch. The reconstruction results showed that the settings had a small effect on the reconstruction. The nonhomogeneous phantom simulation was also carried out to simulate a more complex experimental situation and evaluated their proposed method. Second, the physical cylinder phantom experiments further showed similar results in their prototype XLCT system. With the discussion of the above experiments, it was shown that the proposed method is feasible to the general case and actual experiments. CONCLUSIONS Utilizing numerical simulation and physical experiments, the authors demonstrated the validity of the new cone beam XLCT method. Furthermore, compared with the previous narrow beam XLCT, the cone beam XLCT could more fully utilize the x-ray dose and the scanning time would be shortened greatly. The study of both simulation experiments and physical phantom experiments indicated that the proposed method was feasible to the general case and actual experiments.


Optics Express | 2010

3D reconstruction of light flux distribution on arbitrary surfaces from 2D multi-photographic images.

Xueli Chen; Xinbo Gao; Duofang Chen; Xiaopeng Ma; Xiaohui Zhao; Man Shen; Xiangsi Li; Xiaochao Qu; Jimin Liang; Jorge Ripoll; Jie Tian

Optical tomography can demonstrate accurate three-dimensional (3D) imaging that recovers the 3D spatial distribution and concentration of the luminescent probes in biological tissues, compared with planar imaging. However, the tomographic approach is extremely difficult to implement due to the complexity in the reconstruction of 3D surface flux distribution from multi-view two dimensional (2D) measurements on the subject surface. To handle this problem, a novel and effective method is proposed in this paper to determine the surface flux distribution from multi-view 2D photographic images acquired by a set of non-contact detectors. The method is validated with comparison experiments involving both regular and irregular surfaces. Reconstruction of the inside probes based on the reconstructed surface flux distribution further demonstrates the potential of the proposed method in its application in optical tomography.


Journal of Biomedical Optics | 2013

Reconstruction algorithms based on l1-norm and l2-norm for two imaging models of fluorescence molecular tomography: a comparative study

Huangjian Yi; Duofang Chen; Wei Li; Shouping Zhu; Xiaorui Wang; Jimin Liang; Jie Tian

Abstract. Fluorescence molecular tomography (FMT) is an important imaging technique of optical imaging. The major challenge of the reconstruction method for FMT is the ill-posed and underdetermined nature of the inverse problem. In past years, various regularization methods have been employed for fluorescence target reconstruction. A comparative study between the reconstruction algorithms based on l1-norm and l2-norm for two imaging models of FMT is presented. The first imaging model is adopted by most researchers, where the fluorescent target is of small size to mimic small tissue with fluorescent substance, as demonstrated by the early detection of a tumor. The second model is the reconstruction of distribution of the fluorescent substance in organs, which is essential to drug pharmacokinetics. Apart from numerical experiments, in vivo experiments were conducted on a dual-modality FMT/micro-computed tomography imaging system. The experimental results indicated that l1-norm regularization is more suitable for reconstructing the small fluorescent target, while l2-norm regularization performs better for the reconstruction of the distribution of fluorescent substance.


Applied Optics | 2012

Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography

Huangjian Yi; Duofang Chen; Xiaochao Qu; Kuan Peng; Xueli Chen; Yuanyuan Zhou; Jie Tian; Jimin Liang

In this paper, a multilevel, hybrid regularization method is presented for fluorescent molecular tomography (FMT) based on the hp-finite element method (hp-FEM) with a continuous wave. The hybrid regularization method combines sparsity regularization and Landweber iterative regularization to improve the stability of the solution of the ill-posed inverse problem. In the first coarse mesh level, considering the fact that the fluorescent probes are sparsely distributed in the entire reconstruction region in most FMT applications, the sparse regularization method is employed to take full advantage of this sparsity. In the subsequent refined mesh levels, since the reconstruction region is reduced and the initial value of the unknown parameters is provided from the previous mesh, these mesh levels seem to be different from the first level. As a result, the Landweber iterative regularization method is applied for reconstruction. Simulation experiments on a 3D digital mouse atlas and physical experiments on a phantom are conducted to evaluate the performance of our method. The reconstructed results show the potential and feasibility of the proposed approach.


International Journal of Biomedical Imaging | 2011

Sparse regularization-based reconstruction for bioluminescence tomography using a multilevel adaptive finite element method

Xiaowei He; Yanbin Hou; Duofang Chen; Yuchuan Jiang; Man Shen; Junting Liu; Qitan Zhang; Jie Tian

Bioluminescence tomography (BLT) is a promising tool for studying physiological and pathological processes at cellular and molecular levels. In most clinical or preclinical practices, fine discretization is needed for recovering sources with acceptable resolution when solving BLT with finite element method (FEM). Nevertheless, uniformly fine meshes would cause large dataset and overfine meshes might aggravate the ill-posedness of BLT. Additionally, accurately quantitative information of density and power has not been simultaneously obtained so far. In this paper, we present a novel multilevel sparse reconstruction method based on adaptive FEM framework. In this method, permissible source region gradually reduces with adaptive local mesh refinement. By using sparse reconstruction with l 1 regularization on multilevel adaptive meshes, simultaneous recovery of density and power as well as accurate source location can be achieved. Experimental results for heterogeneous phantom and mouse atlas model demonstrate its effectiveness and potentiality in the application of quantitative BLT.


Biomedical Optics Express | 2014

Incorporating MRI structural information into bioluminescence tomography: system, heterogeneous reconstruction and in vivo quantification.

Jun Zhang; Duofang Chen; Jimin Liang; Huadan Xue; Jing Lei; Qin Wang; Dongmei Chen; Ming Meng; Zhengyu Jin; Jie Tian

Combining two or more imaging modalities to provide complementary information has become commonplace in clinical practice and in preclinical and basic biomedical research. By incorporating the structural information provided by computed tomography (CT) or magnetic resonance imaging (MRI), the ill poseness nature of bioluminescence tomography (BLT) can be reduced significantly, thus improve the accuracies of reconstruction and in vivo quantification. In this paper, we present a small animal imaging system combining multi-view and multi-spectral BLT with MRI. The independent MRI-compatible optical device is placed at the end of the clinical MRI scanner. The small animal is transferred between the light tight chamber of the optical device and the animal coil of MRI via a guide rail during the experiment. After the optical imaging and MRI scanning procedures are finished, the optical images are mapped onto the MRI surface by interactive registration between boundary of optical images and silhouette of MRI. Then, incorporating the MRI structural information, a heterogeneous reconstruction algorithm based on finite element method (FEM) with L 1 normalization is used to reconstruct the position, power and region of the light source. In order to validate the feasibility of the system, we conducted experiments of nude mice model implanted with artificial light source and quantitative analysis of tumor inoculation model with MDA-231-GFP-luc. Preliminary results suggest the feasibility and effectiveness of the prototype system.


Applied Optics | 2010

Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm

Xueli Chen; Xinbo Gao; Xiaochao Qu; Duofang Chen; Xiaopeng Ma; Jimin Liang; Jie Tian

The camera lens diaphragm is an important component in a noncontact optical imaging system and has a crucial influence on the images registered on the CCD camera. However, this influence has not been taken into account in the existing free-space photon transport models. To model the photon transport process more accurately, a generalized free-space photon transport model is proposed. It combines Lambertian source theory with analysis of the influence of the camera lens diaphragm to simulate photon transport process in free space. In addition, the radiance theorem is also adopted to establish the energy relationship between the virtual detector and the CCD camera. The accuracy and feasibility of the proposed model is validated with a Monte-Carlo-based free-space photon transport model and physical phantom experiment. A comparison study with our previous hybrid radiosity-radiance theorem based model demonstrates the improvement performance and potential of the proposed model for simulating photon transport process in free space.


IEEE Transactions on Biomedical Engineering | 2010

In Vivo Quantitative Reconstruction Studies of Bioluminescence Tomography: Effects of Peak-Wavelength Shift and Model Deviation

Junting Liu; Duofang Chen; Xiangsi Li; Xiaopeng Ma; Haichao Chen; Weiwei Fan; Fu Wang; Xiaochao Qu; Jimin Liang; Feng Cao; Jie Tian

Bioluminescence tomography is a novel optical molecular imaging technology. The corresponding system, theory, and algorithmic frames have been set up. In the present study, we concentrated on the analysis of quantitative reconstruction deviation from peak-wavelength shift of luminescent source and the deviation of heterogeneous mouse model. The findings suggest that the reconstruction results are significantly affected by the peak-wavelength shift and deviation of anatomical structure animal models. Furthermore, the model deviations exhibit much more influence than the wavelength shift on the reconstruction results.

Collaboration


Dive into the Duofang Chen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Tian

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge