Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Duojia Pan is active.

Publication


Featured researches published by Duojia Pan.


Cell | 2007

Elucidation of a universal size-control mechanism in Drosophila and mammals.

Jixin Dong; Georg Feldmann; Jianbin Huang; Shian Wu; Nailing Zhang; Sarah A. Comerford; Mariana F. Gayyed; Robert A. Anders; Anirban Maitra; Duojia Pan

Coordination of cell proliferation and cell death is essential to attain proper organ size during development and for maintaining tissue homeostasis throughout postnatal life. In Drosophila, these two processes are orchestrated by the Hippo kinase cascade, a growth-suppressive pathway that ultimately antagonizes the transcriptional coactivator Yorkie (Yki). Here we demonstrate that a single phosphorylation site in Yki mediates the growth-suppressive output of the Hippo pathway. Hippo-mediated phosphorylation inactivates Yki by excluding it from the nucleus, whereas loss of Hippo signaling leads to nuclear accumulation and therefore increased Yki activity. We further delineate a mammalian Hippo signaling pathway that culminates in the phosphorylation of YAP, the mammalian homolog of Yki. Using a conditional YAP transgenic mouse model, we demonstrate that the mammalian Hippo pathway is a potent regulator of organ size, and that its dysregulation leads to tumorigenesis. These results uncover a universal size-control mechanism in metazoan.


Developmental Cell | 2010

The Hippo Signaling Pathway in Development and Cancer

Duojia Pan

First discovered in Drosophila, the Hippo signaling pathway is a conserved regulator of organ size. Central to this pathway is a kinase cascade leading from the tumor suppressor Hippo (Mst1 and Mst2 in mammals) to the oncoprotein Yki (YAP and TAZ in mammals), a transcriptional coactivator of target genes involved in cell proliferation and survival. Here, I review recent progress in elucidating the molecular mechanism and physiological function of Hippo signaling in Drosophila and mammals. These studies suggest that the core Hippo kinase cascade integrates multiple upstream inputs, enabling dynamic regulation of tissue homeostasis in animal development and physiology.


Cell | 2009

Nuclear CDKs Drive Smad Transcriptional Activation and Turnover in BMP and TGF-β Pathways

Claudio Alarcón; Alexia-Ileana Zaromytidou; Qiaoran Xi; Sheng Gao; Jianzhong Yu; Sho Fujisawa; Afsar Barlas; Alexandria N. Miller; Katia Manova-Todorova; Maria J. Macias; Gopal P. Sapkota; Duojia Pan; Joan Massagué

TGF-beta and BMP receptor kinases activate Smad transcription factors by C-terminal phosphorylation. We have identified a subsequent agonist-induced phosphorylation that plays a central dual role in Smad transcriptional activation and turnover. As receptor-activated Smads form transcriptional complexes, they are phosphorylated at an interdomain linker region by CDK8 and CDK9, which are components of transcriptional mediator and elongation complexes. These phosphorylations promote Smad transcriptional action, which in the case of Smad1 is mediated by the recruitment of YAP to the phosphorylated linker sites. An effector of the highly conserved Hippo organ size control pathway, YAP supports Smad1-dependent transcription and is required for BMP suppression of neural differentiation of mouse embryonic stem cells. The phosphorylated linker is ultimately recognized by specific ubiquitin ligases, leading to proteasome-mediated turnover of activated Smad proteins. Thus, nuclear CDK8/9 drive a cycle of Smad utilization and disposal that is an integral part of canonical BMP and TGF-beta pathways.


Genes & Development | 2012

Genetic and pharmacological disruption of the TEAD–YAP complex suppresses the oncogenic activity of YAP

Yi Liu-Chittenden; Bo Huang; Joong Sup Shim; Qian Chen; Se-Jin Lee; Robert A. Anders; Jun O. Liu; Duojia Pan

The Drosophila TEAD ortholog Scalloped is required for Yki-mediated overgrowth but is largely dispensable for normal tissue growth, suggesting that its mammalian counterpart may be exploited for selective inhibition of oncogenic growth driven by YAP hyperactivation. Here we test this hypothesis genetically and pharmacologically. We show that a dominant-negative TEAD molecule does not perturb normal liver growth but potently suppresses hepatomegaly/tumorigenesis resulting from YAP overexpression or Neurofibromin 2 (NF2)/Merlin inactivation. We further identify verteporfin as a small molecule that inhibits TEAD-YAP association and YAP-induced liver overgrowth. These findings provide proof of principle that inhibiting TEAD-YAP interactions is a pharmacologically viable strategy against the YAP oncoprotein.


Developmental Cell | 2008

The TEAD/TEF Family Protein Scalloped Mediates Transcriptional Output of the Hippo Growth-Regulatory Pathway

Shian Wu; Yi Liu; Yonggang Zheng; Jixin Dong; Duojia Pan

The Hippo (Hpo) kinase cascade restricts tissue growth by inactivating the transcriptional coactivator Yorkie (Yki), which regulates the expression of target genes such as the cell death inhibitor diap1 by unknown mechanisms. Here we identify the TEAD/TEF family protein Scalloped (Sd) as a DNA-binding transcription factor that partners with Yki to mediate the transcriptional output of the Hpo growth-regulatory pathway. The diap1 (th) locus harbors a minimal Sd-binding Hpo Responsive Element (HRE) that mediates transcriptional regulation by the Hpo pathway. Sd binds directly to Yki, and a Yki missense mutation that abrogates Sd-Yki binding also inactivates Yki function in vivo. We further demonstrate that sd is required for yki-induced tissue overgrowth and target gene expression, and that sd activity is conserved in its mammalian homolog. Our results uncover a heretofore missing link in the Hpo signaling pathway and provide a glimpse of the molecular events on a Hpo-responsive enhancer element.


Developmental Cell | 2010

The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals.

Nailing Zhang; Haibo Bai; Karen K. David; Jixin Dong; Yonggang Zheng; Jing Cai; Marco Giovannini; Pentao Liu; Robert A. Anders; Duojia Pan

The conserved Hippo signaling pathway regulates organ size in Drosophila and mammals. While a core kinase cascade leading from the protein kinase Hippo (Hpo) (Mst1 and Mst2 in mammals) to the transcription coactivator Yorkie (Yki) (YAP in mammals) has been established, upstream regulators of the Hippo kinase cascade are less well defined, especially in mammals. Using conditional knockout mice, we demonstrate that the Merlin/NF2 tumor suppressor and the YAP oncoprotein function antagonistically to regulate liver development. While inactivation of Yap led to loss of hepatocytes and biliary epithelial cells, inactivation of Nf2 led to hepatocellular carcinoma and bile duct hamartoma. Strikingly, the Nf2-deficient phenotypes in multiple tissues were largely suppressed by heterozygous deletion of Yap, suggesting that YAP is a major effector of Merlin/NF2 in growth regulation. Our studies link Merlin/NF2 to mammalian Hippo signaling and implicate YAP activation as a mediator of pathologies relevant to Neurofibromatosis 2.


Human Pathology | 2008

Expression of Yes-associated protein in common solid tumors

Angela A. Steinhardt; Mariana F. Gayyed; Alison P. Klein; Jixin Dong; Anirban Maitra; Duojia Pan; Elizabeth A. Montgomery; Robert A. Anders

The Hippo signaling pathway is a highly conserved potent regulator of cell growth, division, and apoptosis. Yes-associated protein (YAP), the nuclear effector of the Hippo pathway, is a highly conserved component of this pathway in mammalian systems. In humans, amplification of the chromosome region containing the YAP gene (11q22) has been reported in several tumor types. This study was performed to determine if YAP expression was present in 4 common types of malignant tumors that have the highest lifetime risk of causing cancer death among men and women in the United States. The YAP expression intensity and distribution were evaluated in normal tissues and compared to the most frequently occurring malignant tumors in these tissues (colonic adenocarcinoma, lung adenocarcinoma, ovarian serous cystadenocarcinoma, and ductal carcinoma of the breast). For each tissue, the nuclear and cytoplasmic YAP expression intensity was scored as negative, low, or high. We found focal expression of YAP in the progenitor and reparative cellular compartments of normal tissue. In contrast, there was strong and diffuse nuclear and cytoplasmic YAP expression in colonic adenocarcinoma, lung adenocarcinoma, and ovarian serous cystadenocarcinoma. We concluded that the potent Hippo growth regulatory pathway shows markedly different expression patterns in normal tissues of the colon, lung, and ovary compared to the 3 common malignant tumor types we examined in these tissues. Our findings suggest that activation of the Hippo signaling pathway may occur through YAP as part of cell proliferation in normal tissue homeostasis and also might be a frequently activated oncogenic pathway in 3 common malignant tumor types.


Developmental Cell | 2010

Kibra Functions as a Tumor Suppressor Protein that Regulates Hippo Signaling in Conjunction with Merlin and Expanded

Jianzhong Yu; Yonggang Zheng; Jixin Dong; Stephen Klusza; Wu-Min Deng; Duojia Pan

The Hippo signaling pathway regulates organ size and tissue homeostasis from Drosophila to mammals. Central to this pathway is a kinase cascade wherein Hippo (Hpo), in complex with Salvador (Sav), phosphorylates and activates Warts (Wts), which in turn phosphorylates and inactivates the Yorkie (Yki) oncoprotein, known as the YAP coactivator in mammalian cells. The FERM domain proteins Merlin (Mer) and Expanded (Ex) are upstream components that regulate Hpo activity through unknown mechanisms. Here we identify Kibra as another upstream component of the Hippo signaling pathway. We show that Kibra functions together with Mer and Ex in a protein complex localized to the apical domain of epithelial cells, and that this protein complex regulates the Hippo kinase cascade via direct binding to Hpo and Sav. These results shed light on the mechanism of Ex and Mer function and implicate Kibra as a potential tumor suppressor with relevance to neurofibromatosis.


Genes & Development | 2010

The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program

Jing Cai; Nailing Zhang; Yonggang Zheng; Roeland F. De Wilde; Anirban Maitra; Duojia Pan

Although a developmental role for Hippo signaling in organ size control is well appreciated, how this pathway functions in tissue regeneration is largely unknown. Here we address this issue using a dextran sodium sulfate (DSS)-induced colonic regeneration model. We find that regenerating crypts express elevated Yes-associated protein (YAP) levels. Inactivation of YAP causes no obvious intestinal defects under normal homeostasis, but severely impairs DSS-induced intestinal regeneration. Conversely, hyperactivation of YAP results in widespread early-onset polyp formation following DSS treatment. Thus, the YAP oncoprotein must be exquisitely controlled in tissue regeneration to allow compensatory proliferation and prevent the intrinsic oncogenic potential of a tissue regeneration program.


Proceedings of the National Academy of Sciences of the United States of America | 2010

The apical transmembrane protein Crumbs functions as a tumor suppressor that regulates Hippo signaling by binding to Expanded

Chen Ling; Yonggang Zheng; Feng Yin; Jianzhong Yu; Juan Huang; Yang Hong; Shian Wu; Duojia Pan

The Hippo signaling pathway regulates organ size and tissue homeostasis from Drosophila to mammals. At the core of the Hippo pathway is a kinase cascade extending from the Hippo (Hpo) tumor suppressor to the Yorkie (Yki) oncoprotein. The Hippo kinase cascade, in turn, is regulated by apical membrane-associated proteins such as the FERM domain proteins Merlin and Expanded (Ex), and the WW- and C2-domain protein Kibra. How these apical proteins are themselves regulated remains poorly understood. Here, we identify the transmembrane protein Crumbs (Crb), a determinant of epithelial apical-basal polarity in Drosophila embryos, as an upstream component of the Hippo pathway in imaginal disk growth control. Loss of Crb leads to tissue overgrowth and target gene expression characteristic of defective Hippo signaling. Crb directly binds to Ex through its juxtamembrane FERM-binding motif (FBM). Loss of Crb or mutation of its FBM leads to mislocalization of Ex to basolateral domain of imaginal disk epithelial cells. These results shed light on the mechanism of Ex regulation and provide a molecular link between apical-basal polarity and tissue growth. Furthermore, our studies implicate Crb as a putative cell surface receptor for Hippo signaling by uncovering a transmembrane protein that directly binds to an apical component of the Hippo pathway.

Collaboration


Dive into the Duojia Pan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nailing Zhang

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yonggang Zheng

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Qian Chen

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jianzhong Yu

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Haibo Bai

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Anirban Maitra

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Jixin Dong

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Feng Yin

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge