Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dusica Babovic-Vuksanovic is active.

Publication


Featured researches published by Dusica Babovic-Vuksanovic.


Cell | 2010

SRD5A3 Is Required for Converting Polyprenol to Dolichol and Is Mutated in a Congenital Glycosylation Disorder

Vincent Cantagrel; Dirk J. Lefeber; Bobby G. Ng; Ziqiang Guan; Jennifer L. Silhavy; Ludwig Lehle; Hans Hombauer; Maciej Adamowicz; Ewa Swiezewska; Arjan P.M. de Brouwer; Peter Blümel; Jolanta Sykut-Cegielska; Scott Houliston; Dominika Swistun; Bassam R. Ali; William B. Dobyns; Dusica Babovic-Vuksanovic; Hans van Bokhoven; Ron A. Wevers; Christian R. H. Raetz; Hudson H. Freeze; Eva Morava; Lihadh Al-Gazali; Joseph G. Gleeson

N-linked glycosylation is the most frequent modification of secreted and membrane-bound proteins in eukaryotic cells, disruption of which is the basis of the congenital disorders of glycosylation (CDGs). We describe a new type of CDG caused by mutations in the steroid 5alpha-reductase type 3 (SRD5A3) gene. Patients have mental retardation and ophthalmologic and cerebellar defects. We found that SRD5A3 is necessary for the reduction of the alpha-isoprene unit of polyprenols to form dolichols, required for synthesis of dolichol-linked monosaccharides, and the oligosaccharide precursor used for N-glycosylation. The presence of residual dolichol in cells depleted for this enzyme suggests the existence of an unexpected alternative pathway for dolichol de novo biosynthesis. Our results thus suggest that SRD5A3 is likely to be the long-sought polyprenol reductase and reveal the genetic basis of one of the earliest steps in protein N-linked glycosylation.


JAMA | 2009

Clinical and Mutational Spectrum of Neurofibromatosis Type 1–like Syndrome

Ludwine Messiaen; Suxia Yao; Hilde Brems; Tom Callens; Achara Sathienkijkanchai; Ellen Denayer; Emily Spencer; Pamela Arn; Dusica Babovic-Vuksanovic; Carolyn Bay; Gary B. Bobele; Bruce H. Cohen; Luis F. Escobar; Deborah L. Eunpu; Theresa A. Grebe; Robert M. Greenstein; Rachel Hachen; Mira Irons; David Kronn; Edmond G. Lemire; Kathleen A. Leppig; Cynthia Lim; Marie McDonald; Vinodh Narayanan; Amy Pearn; Robert Pedersen; Berkley R. Powell; Lawrence R. Shapiro; David L. Skidmore; David Tegay

CONTEXT Autosomal dominant inactivating sprouty-related EVH1 domain-containing protein 1 (SPRED1) mutations have recently been described in individuals presenting mainly with café au lait macules (CALMs), axillary freckling, and macrocephaly. The extent of the clinical spectrum of this new disorder needs further delineation. OBJECTIVE To determine the frequency, mutational spectrum, and phenotype of neurofibromatosis type 1-like syndrome (NFLS) in a large cohort of patients. DESIGN, SETTING, AND PARTICIPANTS In a cross-sectional study, 23 unrelated probands carrying a SPRED1 mutation identified through clinical testing participated with their families in a genotype-phenotype study (2007-2008). In a second cross-sectional study, 1318 unrelated anonymous samples collected in 2003-2007 from patients with a broad range of signs typically found in neurofibromatosis type 1 (NF1) but no detectable NF1 germline mutation underwent SPRED1 mutation analysis. MAIN OUTCOME MEASURES Comparison of aggregated clinical features in patients with or without a SPRED1 or NF1 mutation. Functional assays were used to evaluate the pathogenicity of missense mutations. RESULTS Among 42 SPRED1-positive individuals from the clinical cohort, 20 (48%; 95% confidence interval [CI], 32%-64%) fulfilled National Institutes of Health (NIH) NF1 diagnostic criteria based on the presence of more than 5 CALMs with or without freckling or an NF1-compatible family history. None of the 42 SPRED1-positive individuals (0%; 95% CI, 0%-7%) had discrete cutaneous or plexiform neurofibromas, typical NF1 osseous lesions, or symptomatic optic pathway gliomas. In the anonymous cohort of 1318 individuals, 34 different SPRED1 mutations in 43 probands were identified: 27 pathogenic mutations in 34 probands and 7 probable nonpathogenic missense mutations in 9 probands. Of 94 probands with familial CALMs with or without freckling and no other NF1 features, 69 (73%; 95% CI, 63%-80%) had an NF1 mutation and 18 (19%; 95% CI, 12%-29%) had a pathogenic SPRED1 mutation. In the anonymous cohort, 1.9% (95% CI, 1.2%-2.9%) of individuals with the clinical diagnosis of NF1 according to the NIH criteria had NFLS. CONCLUSIONS A high SPRED1 mutation detection rate was found in NF1 mutation-negative families with an autosomal dominant phenotype of CALMs with or without freckling and no other NF1 features. Among individuals in this study, NFLS was not associated with the peripheral and central nervous system tumors seen in NF1.


American Journal of Medical Genetics Part A | 2005

Mayer–Rokitansky–Küster–Hauser anomaly and its associated malformations

Siobhan T. Pittock; Dusica Babovic-Vuksanovic; Aida N. Lteif

Mayer–Rokitansky–Küster Hauser (MRKHA) is a malformation complex comprising absent vagina and absent or rudimentary uterus. The aim of our study was to describe the type and frequency of anomalies associated with the MRKHA. Between 1975 and 2002, 25 patients with a diagnosis of MRKHA were identified at the Mayo Clinic. These charts were reviewed retrospectively. Two of the 25 patients were found to have absence of one ovary and two patients had unilateral oophorectomies performed for benign cysts. Four patients had minor anomalies and two had digital anomalies. The frequency of scoliosis (20%), unilateral renal agenesis (28%), non‐vertebral skeletal anomalies (16%) and of the MURCS association (Müllerian agenesis, renal agenesis/ectopia and cervical somite dysgenesis), 16%, was similar compared to that of other published studies. Vertebral abnormalities were found more frequently in our patients (44%). Four patients had cardiac defects, an anomaly not previously described, including truncus arteriosus, patent ductus arteriosus and patent foramen ovale, mitral valve prolapse, and mild mitral regurgitation. We document cardiac anomalies in 16% of our patients with MRKHA suggesting that a search for associated anomalies including cardiac defects is indicated in all such patients.


Neurology | 2007

NF1 plexiform neurofibroma growth rate by volumetric MRI Relationship to age and body weight

Eva Dombi; Jeffrey Solomon; Andrea Gillespie; Elizabeth Fox; Frank M. Balis; Nicholas J. Patronas; Bruce R. Korf; Dusica Babovic-Vuksanovic; Roger J. Packer; Jean B. Belasco; Stewart Goldman; Regina I. Jakacki; Mark W. Kieran; Seth M. Steinberg; Brigitte C. Widemann

Objective: To longitudinally analyze changes in plexiform neurofibroma (PN) volume in relation to age and body growth in children and young adults with neurofibromatosis type 1 and inoperable, symptomatic, or progressive PNs, using a sensitive, automated method of volumetric MRI analysis. Methods: We included patients 25 years of age and younger with PNs entered in a natural history study or in treatment trials who had volumetric MRI over ≥16 months. Results: We studied 49 patients (median age 8.3 years) with 61 PNs and a median evaluation period of 34 months (range 18 to 70). The PN growth rates varied among patients, but were constant within patients. Thirty-four patients (69%) experienced ≥20% increase in PN volume during the observation period. PN volume increased more rapidly than body weight over time (p = 0.026). Younger patients had the most rapid PN growth rate. Conclusions: Volume increase of plexiform neurofibromas is a realistic and meaningful trial endpoint. In most patients plexiform neurofibroma growth rate exceeded body growth rate. The youngest patients had the fastest plexiform neurofibroma growth rate, and clinical drug development should be directed toward this population. Age stratification for clinical trials for plexiform neurofibromas should be considered.


Nature Genetics | 2014

Germline loss-of-function mutations in LZTR1 predispose to an inherited disorder of multiple schwannomas

Arkadiusz Piotrowski; Jing Xie; Ying F. Liu; Andrzej Poplawski; Alicia Gomes; Piotr Madanecki; Chuanhua Fu; Michael R. Crowley; David K. Crossman; Linlea Armstrong; Dusica Babovic-Vuksanovic; Amanda L. Bergner; Jaishri O. Blakeley; Andrea L. Blumenthal; Molly S. Daniels; Howard Feit; Kathy Gardner; Stephanie Hurst; Christine Kobelka; Chung Lee; Rebecca Nagy; Katherine A. Rauen; John M. Slopis; Pim Suwannarat; Judith A. Westman; Andrea Zanko; Bruce R. Korf; Ludwine Messiaen

Constitutional SMARCB1 mutations at 22q11.23 have been found in ∼50% of familial and <10% of sporadic schwannomatosis cases. We sequenced highly conserved regions along 22q from eight individuals with schwannomatosis whose schwannomas involved somatic loss of one copy of 22q, encompassing SMARCB1 and NF2, with a different somatic mutation of the other NF2 allele in every schwannoma but no mutation of the remaining SMARCB1 allele in blood and tumor samples. LZTR1 germline mutations were identified in seven of the eight cases. LZTR1 sequencing in 12 further cases with the same molecular signature identified 9 additional germline mutations. Loss of heterozygosity with retention of an LZTR1 mutation was present in all 25 schwannomas studied. Mutations segregated with disease in all available affected first-degree relatives, although four asymptomatic parents also carried an LZTR1 mutation. Our findings identify LZTR1 as a gene predisposing to an autosomal dominant inherited disorder of multiple schwannomas in ∼80% of 22q-related schwannomatosis cases lacking mutation in SMARCB1.


American Journal of Medical Genetics | 1998

Spinocerebellar ataxia type 2 (SCA 2) in an infant with extreme CAG repeat expansion

Dusica Babovic-Vuksanovic; Karen Snow; Marc C. Patterson; Virginia V. Michels

Autosomal dominant cerebellar ataxias are a heterogeneous group of neurodegenerative disorders that generally present in adulthood. Spinocerebellar ataxia type 2 typically presents with progressive cerebellar symptoms, slow ocular saccades, and peripheral neuropathy. The onset of symptoms is usually between 20 and 40 years. We describe an infant who presented with neonatal hypotonia, developmental delay, and dysphagia. Ocular findings of retinitis pigmentosa were noted at 10 months. Her father had mild spinocerebellar ataxia first noted at age 22 years. Molecular studies of the SCA2 gene showed a CAG expansion of 43 repeats in the father and an extreme CAG repeat expansion of more than 200 in the baby. Our report expands the known phenotype and genotype of SCA2. Testing for dominant ataxias should be included in the evaluation of infants with nonspecific progressive neurologic symptoms and retinitis pigmentosa, especially in cases with a positive family history for spinocerebellar ataxia.


Human Molecular Genetics | 2013

Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen

Ulrike Schwarze; Tim Cundy; Shawna M. Pyott; Helena E. Christiansen; Madhuri Hegde; Ruud A. Bank; Gerard Pals; Arunkanth Ankala; Karen N. Conneely; Laurie H. Seaver; Suzanne Yandow; Ellen M. Raney; Dusica Babovic-Vuksanovic; Joan M. Stoler; Ziva Ben-Neriah; Reeval Segel; Sari Lieberman; Liesbeth Siderius; Aida Al-Aqeel; Mark C. Hannibal; Louanne Hudgins; Elizabeth McPherson; Michele Clemens; Michael D. Sussman; Robert D. Steiner; John D. Mahan; Rosemarie Smith; Kwame Anyane-Yeboa; Julia Wynn; Karen Chong

Although biallelic mutations in non-collagen genes account for <10% of individuals with osteogenesis imperfecta, the characterization of these genes has identified new pathways and potential interventions that could benefit even those with mutations in type I collagen genes. We identified mutations in FKBP10, which encodes the 65 kDa prolyl cis-trans isomerase, FKBP65, in 38 members of 21 families with OI. These include 10 families from the Samoan Islands who share a founder mutation. Of the mutations, three are missense; the remainder either introduce premature termination codons or create frameshifts both of which result in mRNA instability. In four families missense mutations result in loss of most of the protein. The clinical effects of these mutations are short stature, a high incidence of joint contractures at birth and progressive scoliosis and fractures, but there is remarkable variability in phenotype even within families. The loss of the activity of FKBP65 has several effects: type I procollagen secretion is slightly delayed, the stabilization of the intact trimer is incomplete and there is diminished hydroxylation of the telopeptide lysyl residues involved in intermolecular cross-link formation in bone. The phenotype overlaps with that seen with mutations in PLOD2 (Bruck syndrome II), which encodes LH2, the enzyme that hydroxylates the telopeptide lysyl residues. These findings define a set of genes, FKBP10, PLOD2 and SERPINH1, that act during procollagen maturation to contribute to molecular stability and post-translational modification of type I procollagen, without which bone mass and quality are abnormal and fractures and contractures result.


The Journal of Pediatrics | 1999

Severe hypoglycemia as a presenting symptom of carbohydrate-deficient glycoprotein syndrome☆☆☆★

Dusica Babovic-Vuksanovic; Marc C. Patterson; W.Frederick Schwenk; John F. O’Brien; Jerry Vockley; Hudson H. Freeze; Darshini P. Mehta; Virginia V. Michels

We describe clinical, biochemical, and molecular findings in a 2(1/2)-year-old girl with a phosphomannose isomerase deficiency who presented with severe and persistent hypoglycemia and subsequently developed protein-losing enteropathy, liver disease, and coagulopathy. Six months of therapy with mannose supplementation resulted in clinical improvement and partial correction of biochemical abnormalities.


Brain | 2010

A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism

Eva Morava; Ron A. Wevers; Vincent Cantagrel; Lies H. Hoefsloot; Lihadh Al-Gazali; Jeroen Schoots; Arno van Rooij; Karin Huijben; Connie M. A. van Ravenswaaij-Arts; Marjolein C. J. Jongmans; Jolanta Sykut-Cegielska; Georg F. Hoffmann; Peter Bluemel; Maciej Adamowicz; Jeroen van Reeuwijk; Bobby G. Ng; Jorieke E. H. Bergman; Hans van Bokhoven; Christian Körner; Dusica Babovic-Vuksanovic; M.A.A.P. Willemsen; Joseph G. Gleeson; Ludwig Lehle; Arjan P.M. de Brouwer; Dirk J. Lefeber

Cerebellar hypoplasia and slowly progressive ophthalmological symptoms are common features in patients with congenital disorders of glycosylation type I. In a group of patients with congenital disorders of glycosylation type I with unknown aetiology, we have previously described a distinct phenotype with severe, early visual impairment and variable eye malformations, including optic nerve hypoplasia, retinal coloboma, congenital cataract and glaucoma. Some of the symptoms overlapped with the phenotype in other congenital disorders of glycosylation type I subtypes, such as vermis hypoplasia, anaemia, ichtyosiform dermatitis, liver dysfunction and coagulation abnormalities. We recently identified pathogenic mutations in the SRD5A3 gene, encoding steroid 5α-reductase type 3, in a group of patients who presented with this particular phenotype and a common metabolic pattern. Here, we report on the clinical, genetic and metabolic features of 12 patients from nine families with cerebellar ataxia and congenital eye malformations diagnosed with SRD5A3-congenital disorders of glycosylation due to steroid 5α-reductase type 3 defect. This enzyme is necessary for the reduction of polyprenol to dolichol, the lipid anchor for N-glycosylation in the endoplasmic reticulum. Dolichol synthesis is an essential metabolic step in protein glycosylation. The current defect leads to a severely abnormal glycosylation state already in the early phase of the N-glycan biosynthesis pathway in the endoplasmic reticulum. We detected high expression of SRD5A3 in foetal brain tissue, especially in the cerebellum, consistent with the finding of the congenital cerebellar malformations. Based on the overlapping clinical, biochemical and genetic data in this large group of patients with congenital disorders of glycosylation, we define a novel syndrome of cerebellar ataxia associated with congenital eye malformations due to a defect in dolichol metabolism.


Genetics in Medicine | 2000

Characteristics of two cases with dup(15) (q 11.2-q 12): one of maternal and one of paternal origin

Rong Mao; Syed M. Jalal; Karen Snow; Virginia V. Michels; Susan M Szabo; Dusica Babovic-Vuksanovic

Purpose: The phenotype correlations for interstitial duplications that include the Prader-Willi/Angelman syndrome critical region are not well established. We describe two such duplication cases, one of which was of maternal origin and the other was paternal.Methods: High resolution G-banding, fluorescence in situ hybridization (FISH) for SNRP-N and D15S10 were used for cytogenetic analysis. Southern blot analyses based on parent of origin specific DNA methylation at D15S63 (PW71) locus were utilized for detection of methylated and unmethylated fragments.Results: The duplication was established by the FISH analysis. The molecular pattern suggested a maternal origin of the duplication in patient 1 and a paternal origin in patient 2. Patient 1 (2 years old) had developmental and speech delays with pervasive developmental disorder or mild autism, strabismus, and normal growth parameters with seizures. Patient 2 (16 years old) had global developmental delay, verbal IQ of 94, depression, obesity, food-seeking behavior, and significant behavioral problems that included self-injurious tendencies. Neither patient had significant dysmorphic features or abnormalities of internal organs.Conclusion: The two cases suggest that some patients with 15g11.2g12 duplication may have significant anomalies, and there appear to be phenotypic differences between maternal and paternal transmission of the duplication.

Collaboration


Dive into the Dusica Babovic-Vuksanovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ludwine Messiaen

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge