Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dusica Maysinger is active.

Publication


Featured researches published by Dusica Maysinger.


Colloids and Surfaces B: Biointerfaces | 1999

Nano-engineering block copolymer aggregates for drug delivery

Christine Allen; Dusica Maysinger; Adi Eisenberg

Abstract This review describes the properties of block copolymer micelles which influence their efficiency as drug delivery vehicles for hydrophobic drugs. The key performance related properties we discuss are loading capacity, release kinetics, circulation time, biodistribution, size, size distribution and stability. Each of the properties is discussed in detail with specific attention given to the way in which they may be changed or controlled, the aim being to allow the reader to tailor-make block copolymer micelles for a particular application. In addition, the last section of the review focuses on the morphology of the micelles as another performance related property which, to this point, remains unexplored in this connection.


Journal of Molecular Medicine | 2008

Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells

Angela O. Choi; Shelley E. Brown; Moshe Szyf; Dusica Maysinger

The staggering array of nanotechnological products, found in our environment and those applicable in medicine, has stimulated a growing interest in examining their long-term impact on genetic and epigenetic processes. We examined here the epigenomic and genotoxic response to cadmium telluride quantum dots (QDs) in human breast carcinoma cells. QD treatment induced global hypoacetylation implying a global epigenomic response. The ubiquitous responder to genotoxic stress, p53, was activated by QD challenge resulting in translocation of p53, with subsequent upregulation of downstream targets Puma and Noxa. Consequential decrease in cell viability was in part prevented by the p53 inhibitor pifithrin-α, suggesting that p53 translocation contributes to QD-induced cytotoxicity. These findings suggest three levels of nanoparticle-induced cellular changes: non-genomic, genomic and epigenetic. Epigenetic changes may have long-term effects on gene expression programming long after the initial signal has been removed, and if these changes remain undetected, it could lead to long-term untoward effects in biological systems. These studies suggest that aside from genotoxic effects, nanoparticles could cause more subtle epigenetic changes which merit thorough examination of environmental nanoparticles and novel candidate nanomaterials for medical applications.


Journal of Nanobiotechnology | 2007

Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells.

Angela O. Choi; Sung Ju Cho; Julie Desbarats; Jasmina Lovrić; Dusica Maysinger

BackgroundNeuroblastoma, a frequently occurring solid tumour in children, remains a therapeutic challenge as existing imaging tools are inadequate for proper and accurate diagnosis, resulting in treatment failures. Nanoparticles have recently been introduced to the field of cancer research and promise remarkable improvements in diagnostics, targeting and drug delivery. Among these nanoparticles, quantum dots (QDs) are highly appealing due to their manipulatable surfaces, yielding multifunctional QDs applicable in different biological models. The biocompatibility of these QDs, however, remains questionable.ResultsWe show here that QD surface modifications with N-acetylcysteine (NAC) alter QD physical and biological properties. In human neuroblastoma (SH-SY5Y) cells, NAC modified QDs were internalized to a lesser extent and were less cytotoxic than unmodified QDs. Cytotoxicity was correlated with Fas upregulation on the surface of treated cells. Alongside the increased expression of Fas, QD treated cells had increased membrane lipid peroxidation, as measured by the fluorescent BODIPY-C11 dye. Moreover, peroxidized lipids were detected at the mitochondrial level, contributing to the impairment of mitochondrial functions as shown by the MTT reduction assay and imaged with confocal microscopy using the fluorescent JC-1 dye.ConclusionQD core and surface compositions, as well as QD stability, all influence nanoparticle internalization and the consequent cytotoxicity. Cadmium telluride QD-induced toxicity involves the upregulation of the Fas receptor and lipid peroxidation, leading to impaired neuroblastoma cell functions. Further improvements of nanoparticles and our understanding of the underlying mechanisms of QD-toxicity are critical for the development of new nanotherapeutics or diagnostics in nano-oncology.


Journal of Controlled Release | 2000

Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone.

Christine Allen; Jeannie Han; Yisong Yu; Dusica Maysinger; Adi Eisenberg

Block copolymer micelles formed from copolymers of poly(caprolactone)-b-poly(ethylene oxide) (PCL-b-PEO) were investigated as a drug delivery vehicle for dihydrotestosterone (DHT). The physical parameters of the PCL-b-PEO micelle-incorporated DHT were measured, including the loading capacity of the micelles for DHT, the apparent partition coefficient of DHT between the micelles and the external medium and the kinetics of the release of DHT from the micelle solution. The MTT survival assay was used to assess the in vitro biocompatibility of PCL-b-PEO micelles in HeLa cell cultures. The biological activity of the micelle-incorporated DHT was evaluated in HeLa cells which had been co-transfected with the expression vectors for the androgen receptor and the MMTV-LUC reporter gene. The PCL-b-PEO micelles were found to have a high loading capacity for DHT and the release profile of the drug from the micelle solution was found to be a slow steady release which continued over a 1-month period. The biological activity of the micelle-incorporated DHT was found to be fully retained.


Pancreas | 2000

Cell loss in isolated human islets occurs by apoptosis.

Steven Paraskevas; Dusica Maysinger; Rennien Wang; William P. Duguid; Lawrence Rosenberg

Purified islet allografts have largely failed to maintain long-term glucose homeostasis in human recipients, and the reasons for this are unclear. It is noteworthy, however, that islet isolation destroys or removes cellular and noncellular elements of the pancreas that could play an important role in supporting islet survival. The purpose of this study was to determine whether human islet isolation leads to the induction of programmed cell death. Human islets were enzymatically isolated from cadaveric donor pancreata using Liberase or Collagenase P, purified over a discontinuous BSA gradient, then cultured in RPMI 1640 at 37°C in 5% CO2 for ≤7 days. Islets were examined daily by routine histology and immunocytochemistry for islet hormones, DNA fragmentation [cell death; enzyme-linked immunosorbent assay (ELISA) and TUNEL assay] and for transglutaminase (TG) activity, two indicators of apoptosis. TG activity and DNA fragmentation increased by 1,000% and 1,890%, respectively (p < 0.05) This corresponded to the appearance of pyknotic nuclei on light microscopy, the presence of apoptotic bodies on electron microscopy, and the demonstration of TUNEL-positive cells. These were present primarily in a distribution that corresponded to the insulin-immunoreactive cells. At 5 days, 31.4 ± 2.2% of islet cells were TUNEL positive. In summary, apoptosis of islet cells appears soon after islet isolation, and involves primarily the &bgr; cell. This is the first report of apoptosis of islet cells after human islet isolation. The loss of &bgr;-cell mass could be implicated in the failure of islet transplantation and merits further investigation.


Surgery | 1999

Structural and functional changes resulting from islet isolation lead to islet cell death

Lawrence Rosenberg; Rennian Wang; S. Paraskevas; Dusica Maysinger

BACKGROUND Islet isolation exposes the islet to a variety of cellular stresses and disrupts the cell-matrix relationship--events known to be associated with apoptosis. The purpose of this study was to determine whether islet isolation leads invariably to islet cell death and to specify the mechanisms involved. METHODS Canine islets were isolated using Liberase CI and purified using a centrifuge. Islets were sampled for up to 5 days in culture and analyzed by routine histology, electron microscopy, immunocytochemistry, and reticulin staining for basement membrane. Apoptosis was assessed by cell death enzyme-linked immunosorbent assay and terminal deoxynucleotidyl transferase-mediated decoxyuridine triphosphate nick and labeling (TUNEL) assay. Activation of the prosurvival ERK1/2 and proapoptotic p38 and JNK were determined by immunoblotting. RESULTS Immediately after isolation, the peri-insular basement membrane was absent, and integrin-alpha 5 expression diminished. DNA fragmentation rose from 2.5 +/- 1.8 (arbitrary units) on the day of isolation to 42.4 +/- 6.7 48 hours later (P < .05), coinciding with the appearance of pyknotic nuclei and apoptotic bodies. The apoptotic index determined by TUNEL assay increased from 5% +/- 1% on the day of isolation to 60% +/- 2% on day 5 (P < .01), and most of the affected cells were beta-cells. Finally, the p38 and JNK activity were elevated relative to ERK1/2. CONCLUSIONS During isolation, islet cells undergo profound changes in structure and function, resulting in beta-cell apoptosis. These findings suggest that strategies directed to the manipulation of the cell-matrix relationship and the modulation of mitogen-activated protein kinase signal transduction may offer a valuable new approach to improving islet transplant outcome.


Journal of Drug Targeting | 2006

Block copolymer micelles as delivery vehicles of hydrophobic drugs: Micelle–cell interactions

Radoslav Savić; Adi Eisenberg; Dusica Maysinger

One-third of drugs in development are water insoluble and one-half fail in trials because of poor pharmacokinetics. Block copolymer micelles are nanosized particles that can solubilize hydrophobic drugs and alter their kinetics in vitro and in vivo. However, block copolymer micelles are not solely passive drug containers that simply solubilize hydrophobic drugs; cells internalize micelles. To facilitate the development of advanced, controlled, micellar drug delivery vehicles, we have to understand the fate of micelles and micelle-incorporated drugs in cells and in vivo. With micelle-based drug formulations recently reaching clinical trials, the impetus for answers is ever so strong and detailed studies of interactions of micelles and cells are starting to emerge. Most notably, the question arises: Is the internalization of block copolymer micelles carrying small molecular weight drugs an undesired side effect or a useful means of improving the effectiveness of the incorporated drugs?


Accounts of Chemical Research | 2013

Quantum Dot Cytotoxicity and Ways To Reduce It

Françoise M. Winnik; Dusica Maysinger

The dramatic increase in the use of nanoparticles (NP) in industry and research has raised questions about the potential toxicity of such materials. Unfortunately, not enough is known about how the novel, technologically-attractive properties of NPs correlate with the interactions that may take place at the nano/bio interface. The academic, industrial, and regulatory communities are actively seeking answers to the growing concerns on the impact of nanotechnology on humans. In this Account we adopt quantum dots (QDs) as an illustrative example of the difficulties associated with the development of a rational science-based approach to nanotoxicology. The optical properties of QDs are far superior to those of organic dyes in terms of emission and absorption bandwidths, quantum yield, and resistance to photobleaching. Moreover, QDs may be decorated with targeting moieties or drugs and, therefore, are candidates for site-specific medical imaging and for drug delivery, for example in cancer treatment. Earlier this year researchers demonstrated that QD-based imaging using monkeys caused no adverse effects although QDs accumulated in lymph nodes, bone marrow, liver, and spleen for up to 3 months after injection. Such persistence of QDs in live animals does, however, raise concerns about the safety of using QDs both in the laboratory and in the clinic. Researchers anticipate that QDs will be increasingly used not only in clinical applications but also in various manufactured products. For example, QD-solar cells have emerged as viable contenders to complement or replace dye-sensitized solar cells; CdTe/CdS thin film cells have already captured approximately 10 percent of the global market, and in addition, QDs can serve as components of sensors and as emitting materials in LEDs. Given the clear indications that QDs will inevitably become components of a wide range of manufactured and consumer products, researchers and policy makers need to understand the possible health risks associated with exposure to QDs. In this Account, we initially review the known mechanisms by which QDs can damage cells, including oxidative stress elicited by reactive oxygen species (ROS). We discuss lesser-known impairments induced in cells by nanomolar to picomolar concentrations of QDs, which imply that cadmium-containing QDs can exert genotoxic, epigenetic, and metalloestrogenic effects. These observations strongly suggest that minute concentrations of QDs could be sufficient to cause long lasting, even transgenerational, effects. We also consider various modes by which humans could be exposed to QDs in their work or through the environment. Although considerable advances have been made in enhancing the stability and overall quality of QDs, over time they can partially degrade in the environment or in biological systems, and eventually cause small, but cumulative undesirable effects. A combination of toxicological, genetic, epigenetic and imaging approaches is required to create comprehensive guidelines for evaluating the nanotoxicity of nanomaterials, including QDs. Prior to biological investigations with these materials, an indispensible step must be the full characterization of NPs by complementary techniques. Specifically, the concentration, size, charge, and ligand stability of NPs in biological media must be known if we are to understand fully how the properties of nanoparticles and of their biological environment contribute to cytotoxicity.


ACS Nano | 2010

Microglial Response to Gold Nanoparticles

Eliza Hutter; Sebastien Boridy; Simon Labrecque; Mélanie Lalancette-Hébert; Jasna Kriz; Françoise M. Winnik; Dusica Maysinger

Given the emergence of nanotherapeutics and nanodiagnostics as key tools in todays medicine, it has become of critical importance to define precisely the interactions of nanomaterials with biological systems and to characterize the resulting cellular response. We report here the interactions of microglia and neurons with gold nanoparticles (GNPs) of three morphologies, spheres, rods, and urchins, coated with poly(ethylene glycol) (PEG) or cetyl trimethylammonium bromide (CTAB). Microglia are the resident immune cells of the brain, primarily involved in surveillance, macrophagy, and production of cytokines and trophic factors. Analysis by dark-field microscopy and by two-photon-induced luminescence (TPL) indicates that the exposure of neural cells to GNPs resulted in (i) GNP internalization by both microglial cells and primary hippocampal neurons, as revealed by dark-field microscopy and by two-photon-induced luminescence (TPL), (ii) transient toll-like receptor 2 (TLR-2) up-regulation in the olfactory bulb, after intranasal administration in transgenic mice, in vivo, in real time, and (iii) differential up-regulation in vitro of TLR-2 together with interleukin 1 alpha (IL-1alpha), granulocyte macrophage colony-stimulating factor (GM-CSF) and nitric oxide (NO) in microglia. The study demonstrates that GNP morphology and surface chemistry strongly influence the microglial activation status and suggests that interactions between GNPs and microglia can be differentially regulated by tuning GNP nanogeometry.


Diabetes | 2009

Proinflammatory Cytokines Activate the Intrinsic Apoptotic Pathway in β-Cells

Lars Groth Grunnet; Reid Aikin; Morten Tonnesen; Steven Paraskevas; Lykke Blaabjerg; Joachim Størling; Lawrence Rosenberg; Nils Billestrup; Dusica Maysinger; Thomas Mandrup-Poulsen

OBJECTIVE Proinflammatory cytokines are cytotoxic to β-cells and have been implicated in the pathogenesis of type 1 diabetes and islet graft failure. The importance of the intrinsic mitochondrial apoptotic pathway in cytokine-induced β-cell death is unclear. Here, cytokine activation of the intrinsic apoptotic pathway and the role of the two proapoptotic Bcl-2 proteins, Bad and Bax, were examined in β-cells. RESEARCH DESIGN AND METHODS Human and rat islets and INS-1 cells were exposed to a combination of proinflammatory cytokines (interleukin-1β, interferon-γ, and/or tumor necrosis factor-α). Activation of Bad was determined by Ser136 dephosphorylation, mitochondrial stress by changes in mitochondrial metabolic activity and cytochrome c release, downstream apoptotic signaling by activation of caspase-9 and -3, and DNA fragmentation. The inhibitors FK506 and V5 were used to investigate the role of Bad and Bax activation, respectively. RESULTS We found that proinflammatory cytokines induced calcineurin-dependent dephosphorylation of Bad Ser136, mitochondrial stress, cytochrome c release, activation of caspase-9 and -3, and DNA fragmentation. Inhibition of Bad Ser136 dephosphorylation or Bax was found to inhibit cytokine-induced intrinsic proapoptotic signaling. CONCLUSIONS Our findings demonstrate that the intrinsic mitochondrial apoptotic pathway contributes significantly to cytokine-induced β-cell death and suggest a functional role of calcineurin-mediated Bad Ser136 dephosphorylation and Bax activity in cytokine-induced apoptosis.

Collaboration


Dive into the Dusica Maysinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge