Dustin D. Johnson
Oregon State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dustin D. Johnson.
Res. Pap. RMRS-RP-69. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 15 p. | 2008
Richard F. Miller; Robin J. Tausch; E. Durant McArthur; Dustin D. Johnson; Stewart C. Sanderson
Numerous studies have documented the expansion of woodlands in the Intermountain West; however, few have compared the chronology of expansion for woodlands across different geographic regions or determined the mix and extent of presettlement stands. We evaluated tree age structure and establishment for six woodlands in four ecological provinces in the central and northern Great Basin. Since 1860, the area occupied by pinon and or juniper has increased 125 to 625 percent. The increase of trees was a result of infill into shrub-steppe communities with relatively open low density stands of trees and expansion of pinon and juniper into sagebrush-steppe communities that previously did not support trees. Woodland expansion in Oregon, Utah, and Nevada were similar, but began two to three decades earlier in Idaho. The majority of woodlands are still in the early to mid phases of stand closure, which means they often support an understory of shrubs and herbaceous vegetation. This has implications for future changes that will occur within these woodlands in the next 30 to 50 years. In the absence of disturbance or management, the majority of these landscapes will become closed woodlands resulting in the loss of understory plant species and greater costs for restoration.
Rangeland Ecology & Management | 2007
David Ganskopp; Dustin D. Johnson
Abstract Global Positioning System (GPS) error, associated with free-ranging animal studies, remains a concern in range/animal research. For distance measures, errors may be additive over time and increase as sampling frequency intensifies. The first study assayed effects of coordinate integration time (10 hourly intervals), 10 GPS collars, and range of unit movement (0 to 90 m in 10-m intervals as treatments) on bias of GPS measures of distance. “Bias” was the difference between measured distances and distances derived from GPS coordinates of units moved over a surveyed grid. A second study evaluated four methods (regression modeling, minimum distance threshold, motion sensor threshold, and a combined minimum distance/motion sensor technique) for extracting perceived movements from GPS data acquired from cattle. A classification assessment compared observation data of cattle with their corresponding GPS records after filtering by the four techniques. Except for immobile GPS collars in study 1, bias of distance measures was inconsequential for movements ranging from 10 to 90 m (differentially corrected mean bias = 0.18 m ± 0.12 m SE). When collars were immobile, GPS error generated about 1.7 m ± 0.7 m SE of perceived travel per record with postdifferentially corrected coordinates (P < 0.05), and 3.9 m ± 0.8 m SE with uncorrected data. At specific times, post-differential correction failures can affect (P ≤ 0.05) GPS measures of distance. Using any of four proposed techniques, one may effectively filter data sets to remove perceived travel accrued when cattle were resting with 81% to 92% of resting intervals correctly classified. The most effective regression technique suggested cattle travels were overestimated by about 15.2% or 1.15 km daily without filtering.
Rangeland Ecology & Management | 2010
Kirk W. Davies; Steven L. Petersen; Dustin D. Johnson; D. Bracken Davis; Matthew D. Madsen; Daniel L. Zvirzdin; Jon D. Bates
Abstract Western juniper (Juniperus occidentalis subsp. occidentalis Hook.) woodlands are expanding from their historic range and causing significant declines of other plant communities. However, landscape-scale restoration projects are hindered by time-consuming and expensive methods to inventory juniper cover and prioritize landscapes based on developmental phase of juniper encroachment. We investigated the ability of feature-extraction software to estimate western juniper cover from color aerial photographs obtained from the National Agriculture Imagery Program (NAIP) and explored the relationships between juniper cover at stand closure (potential juniper cover) and environmental/site indices (heat load, site exposure, and integrated moisture index) and characteristics measured from commonly available geospatial data layers. Estimates of juniper cover derived from NAIP imagery and ground measurements were similar (R2 = 0.74; P < 0.01). Neither method consistently estimated juniper cover higher or lower than the other method (P = 0.79). Environmental indices were either not correlated or weakly correlated with juniper cover at stand closure. However, the environmental/site characteristics (slope, aspect, and elevation) could be used to explain 40% of the variation in juniper cover at stand closure (R2 = 0.40; P < 0.01). Thus, commonly available geospatial data layers can be used to assist in determining potential juniper cover. This information can then be compared to current juniper cover to determine juniper woodland developmental phase. Knowing the developmental phase is important because management strategies and effectiveness of restoration treatments differ among phases of juniper encroachment. Our results suggest that NAIP imagery can be a valuable tool to estimate juniper cover over large areas effectively to make landscape-scale restoration more feasible. The model of the relationship between environmental/site characteristics measured from commonly available geospatial data layers and potential juniper can be used to assist in restoration planning and prioritization, but could be improved with further refinement.
Rangeland Ecology & Management | 2008
Dustin D. Johnson; David Ganskopp
Abstract A challenge in animal behavior studies using Global Positioning System (GPS) collars is selecting a sampling frequency to accomplish desired goals. High data resolution (i.e., frequent sampling) is appealing, because it maximizes behavioral information garnered. Extended sampling might be needed, however, to describe long term behaviors or seasonal dynamics. Because tradeoffs exist between high data resolution and sampling duration, we evaluated the effects of variable GPS sampling intervals on proportions of pastures used by cattle and distance traveled per day. This was accomplished with GPS collars configured to record cattle positions every 5 min for 15 d in three 829–864-ha pastures. Data were iteratively reduced to simulate increasingly longer GPS recording intervals from once every 10 min up to once daily. Two techniques were used to measure the percentage of pastures accessed by cattle. The first counted only pixels containing GPS coordinates. The second counted pixels containing coordinates and/or traversed by lines between vertices. Expansion of GPS recording intervals decreased (P < 0.01) estimates of the proportion of pastures visited by cattle with rates of decline best fit by exponential decay functions for both line and point techniques (R2 = 0.93 and 0.97, respectively). Spatial errors accompanying less frequent sampling intervals, however, were extremely large with the line technique and misrepresented areas visited by cattle. Expansion of GPS sampling intervals decreased (P < 0.001) distance traveled per day by cattle about 10% with each iteration. If travel corridors or accurate assessments of resources accessed are of critical concern, then longer GPS integration intervals should be avoided because they propagate flawed spatial interpretations. Similarly, if accurate measures of travel distances are critical, we suggest using a relatively frequent GPS recording interval.
Rangelands | 2008
Kirk W. Davies; Dustin D. Johnson
Managing Medusahead in the Intermountain West Is at a Critical Threshold DOI:10.2458/azu_rangelands_v30i4_davies
Rangeland Ecology & Management | 2015
Kirk W. Davies; Chad S. Boyd; Dustin D. Johnson; Aleta M. Nafus; Matthew D. Madsen
ABSTRACT Millions of hectares of Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis Beetle & Young) rangeland have been invaded by medusahead (Taeniatherum caput-medusae [L.] Nevski), an exotic annual grass that degrades wildlife habitat, reduces forage production, and decreases biodiversity. Revegetation of medusahead-invaded sagebrush plant communities is necessary to restore ecosystem services. Disagreement, however, exists over whether to seed native or introduced perennial species to revegetate communities after controlling medusahead. Though native species generally do not establish as well as introduced species, interference from co-seeded introduced species has often been attributed to the limited success of natives. The potential for seeding natives to revegetate communities after medusahead control is relatively unknown because they have been largely co-seeded with introduced species. We compared the results of seeding native and introduced perennial species after controlling medusahead with prescribed burning followed with an imazapic herbicide application at five sites. Perennial bunchgrass cover and density were 5- and 10-fold greater in areas seeded with introduced compared with native species 3 years post seeding. Furthermore, exotic annual grass cover and density were less in areas seeded with introduced compared with native species. Seeded introduced and native shrubs largely failed to establish. High perennial bunchgrass density (15 individuals · m-2) in areas seeded with introduced species in the third year post seeding suggests that the succession trajectory of these communities has shifted to becoming perennial dominated. Average perennial bunchgrass density of 1.5 individuals· m-2 with seeding native species will likely not limit medusahead and appears to already be converting back to exotic annual grass-dominated communities. These results suggest that seeding introduced compared with native species after medusahead control will likely be more successful. Our results also imply that if natives are selected to seed after medusahead control, additional resources may be necessary to recontrol medusahead and repeatedly sow native species.
Invasive Plant Science and Management | 2011
Kirk W. Davies; Dustin D. Johnson
Abstract Invasive plants are negatively affecting the ecological and economic production of rangelands by reducing resource productivity, decreasing biodiversity, displacing native vegetation, and altering ecosystem processes and functions. However, despite these well-known negative effects, once invasive plants are regionally established, limited effort is directed at preventing their continued spread across rangelands. Most efforts are directed at restoration at specific locations while additional rangelands are invaded. Restoring native plant communities invaded by exotic plants is frequently unsuccessful, especially in more arid environments, and is often too costly to apply at the scale required to make meaningful progress in reducing invasive plant populations relative to their expansion. Of the few prevention efforts being implemented, most are a second priority to control and restoration efforts. Integrating strategies to prevent new infestations and restrict the expansion of existing populations in invasive plant management programs is critical to limiting the negative effects of invasive plants in rangelands. However, we are “missing the boat” on this issue by not providing sufficiently developed and validated management actions. Limited information is available for developing management strategies to prevent the spread of invasive plants, although it has been suggested that land managers need to increase biotic resistance of desired plant communities, decrease invasive plant propagule pressure, and eradicate small incipient infestations to prevent the continued expansion of invasive plants. Thus, instead of scientifically validated methods developed to limit the spread of invasive plants, managers are often left with vague suggestions for preventing the continued spread of invasive plants. We suggest that if prevention is going to be successful, researchers are going to need to conduct more applied research to provide land managers with specific prevention strategies and quantify the benefits of various prevention strategies.
Rangeland Ecology & Management | 2014
Chad S. Boyd; Dustin D. Johnson; Jay D. Kerby; Tony J. Svejcar; Kirk W. Davies
Abstract Declining greater sage-grouse populations are causing concern for the future of this species across the western United States. Major ecosystem issues, including exotic annual grass invasion and conifer encroachment, threaten vast acreages of sagebrush rangeland and are primary threats to sage-grouse. We discuss types of problems facing sage-grouse habitat and argue that complex ecosystem problems may be difficult to address under the Endangered Species Act as currently applied. Some problems, such as anthropogenic development, can be effectively regulated to produce a desired outcome. Other problems that are complex and involve disruption of ecosystem processes cannot be effectively regulated and require ongoing commitment to adaptive management. We believe that historical inertia of the regulatory paradigm is sufficient to skew management toward regulatory mechanisms, even though complex ecosystem problems impact large portions of the sage-grouse range. To overcome this situation, we suggest that the regulatory approach embodied in the Endangered Species Act be expanded to include promoting management trajectories needed to address complex ecosystem problems. This process should begin with state-and-transition models as the basis for a conceptual framework that outlines potential plant communities, their value as sage-grouse habitat, and their ecological status. Desired management trajectories are defined by maintenance of an ecologically resilient state that is of value as sage-grouse habitat, or movement from a less desired to a more desired state. Addressing complex ecosystem problems will involve shifting conservation roles. Under the regulatory approach, programmatic scales define regulatory policies, and local scales focus on implementing those policies. With complex ecosystem problems, programmatic scales empower local conservationists to make decisions necessary to adaptively manage problems. Putting ecosystem management on par with traditional regulatory actions honors obligations to provide regulatory protections while maintaining the capacity of the ecosystem to produce habitat and greatly expands the diversity of stakeholders willing to participate in sage-grouse conservation.
Rangeland Ecology & Management | 2008
Dustin D. Johnson; Richard F. Miller
Abstract Successful implementation of watershed restoration projects involving control of piñon and juniper requires understanding the spatial extent and role presettlement trees (> 140 yr) play in the ecology of Intermountain West landscapes. This study evaluated the extent, abundance, and spatial pattern of presettlement western juniper (Juniperus occidentalis Hook.) in four woodlands located in southeast Oregon and southwest Idaho. The potential for modeling presence/absence of presettlement juniper using site characteristics was tested with logistic regression and the influence presettlement trees had on postsettlement woodland (trees < 140 yr) expansion was evaluated with a Welchs t-test. Pre- and postsettlement tree densities, tree ages, site characteristics, and understory vegetation were measured along four 14–27 km transects. Presettlement juniper occurred in 16%–67% of stands in the four woodlands and accounted for 1%–10% of the population of trees > 1 m tall. Presettlement trees were generally widely scattered and more common in lower elevation stands with greater surface rock cover and higher insolate exposure. Presettlement trees sparsely occupied productive sites on deeper soils in southwest Idaho, suggesting the area had sustained a different disturbance regime than southeast Oregon. Southwest Idaho might have experienced a high frequency of lower severity fire that afforded survival to widely distributed legacy trees. This supposition is in contrast to most reports of a disturbance regime including either stand replacement or frequent fire of sufficient intensity to preclude survival of trees to maturity. Stands sustaining presettlement trees initiated woodland expansion 24 yr earlier than stands lacking presettlement trees. Presettlement trees may serve as a seed source potentially reducing the longevity of juniper control treatments. For areas with greater abundances and spatial distribution of presettlement trees such as southwest Idaho, management maintaining low intensity fire or cutting treatments at frequencies of less than 50 yr should sustain relatively open stands.
Rangeland Ecology & Management | 2017
Chad S. Boyd; Jay D. Kerby; Tony J. Svejcar; Jon D. Bates; Dustin D. Johnson; Kirk W. Davies
ABSTRACT Management of conservation-reliant species can be complicated by the need to manage ecosystem processes that operate at extended temporal horizons. One such process is the role of fire in regulating abundance of expanding conifers that disrupt sage-grouse habitat in the northern Great Basin of the United States. Removing conifers by cutting has a beneficial effect on sage-grouse habitat. However, effects may last only a few decades because conifer seedlings are not controlled and the seed bank is fully stocked. Fire treatment may be preferred because conifer control lasts longer than for mechanical treatments. The amount of conservation needed to control conifers at large temporal and spatial scales can be quantified by multiplying land area by the time needed for conifer abundance to progress to critical thresholds (i.e., “conservation volume”). The contribution of different treatments in arresting conifer succession can be calculated by dividing conservation volume by the duration of treatment effect. We estimate that fire has approximately twice the treatment life of cutting at time horizons approaching 100 yr, but, has high up-front conservation costs due to temporary loss of sagebrush. Cutting has less up-front conservation costs because sagebrush is unaffected, but it is more expensive over longer management time horizons because of decreased durability. Managing conifers within sage-grouse habitat is difficult because of the necessity to maintain the majority of the landscape in sagebrush habitat and because the threshold for negative conifer effects occurs fairly early in the successional process. The time needed for recovery of sagebrush creates limits to fire use in managing sage-grouse habitat. Utilizing a combination of fire and cutting treatments is most financially and ecologically sustainable over long time horizons involved in managing conifer-prone sage-grouse habitat.