Dwight Barkley
University of Warwick
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dwight Barkley.
Journal of Fluid Mechanics | 1996
Dwight Barkley; Ronald D. Henderson
Results are reported from a highly accurate, global numerical stability analysis of the periodic wake of a circular cylinder for Reynolds numbers between 140 and 300. The analysis shows that the two-dimensional wake becomes (absolutely) linearly unstable to three-dimensional perturbations at a critical Reynolds number of 188.5±1.0. The critical spanwise wavelength is 3.96 ± 0.02 diameters and the critical Floquet mode corresponds to a ‘Mode A’ instability. At Reynolds number 259 the two-dimensional wake becomes linearly unstable to a second branch of modes with wavelength 0.822 diameters at onset. Stability spectra and corresponding neutral stability curves are presented for Reynolds numbers up to 300.
international symposium on physical design | 1991
Dwight Barkley
Abstract Starting from a two-variable system of reaction-diffusion equations, an algorithm is devised for efficient simulation of waves in excitable media. The spatio-temporal resolution of the simulation can be varied continuously. For fine resolutions the algorithm provides accurate solution of the underlying reaction-diffusion equations. For coarse resolutions, the algorithm provides qualitative simulations at small computational cost.
Journal of Fluid Mechanics | 2002
Dwight Barkley; M. Gabriela M. Gomes; Ronald D. Henderson
Results are reported from a three-dimensional computational stability analysis of flow over a backward-facing step with an expansion ratio (outlet to inlet height) of 2 at Reynolds numbers between 450 and 1050. The analysis shows that the first absolute linear instability of the steady two-dimensional flow is a steady three-dimensional bifurcation at a critical Reynolds number of 748. The critical eigenmode is localized to the primary separation bubble and has a flat roll structure with a spanwise wavelength of 6.9 step heights. The system is further shown to be absolutely stable to two-dimensional perturbations up to a Reynolds number of 1500. Stability spectra and visualizations of the global modes of the system are presented for representative Reynolds numbers.
Science | 2011
Kerstin Avila; David Moxey; Alberto de Lozar; Marc Avila; Dwight Barkley; Björn Hof
The lifetimes of injected jet puffs are used to determine the critical point at which turbulent pipe flow is sustained. Shear flows undergo a sudden transition from laminar to turbulent motion as the velocity increases, and the onset of turbulence radically changes transport efficiency and mixing properties. Even for the well-studied case of pipe flow, it has not been possible to determine at what Reynolds number the motion will be either persistently turbulent or ultimately laminar. We show that in pipes, turbulence that is transient at low Reynolds numbers becomes sustained at a distinct critical point. Through extensive experiments and computer simulations, we were able to identify and characterize the processes ultimately responsible for sustaining turbulence. In contrast to the classical Landau-Ruelle-Takens view that turbulence arises from an increase in the temporal complexity of fluid motion, here, spatial proliferation of chaotic domains is the decisive process and intrinsic to the nature of fluid turbulence.
Archive | 2000
Laurette S. Tuckerman; Dwight Barkley
A collection of methods is presented to adapt a pre-existing timestepping code to perform various bifurcation-theoretic tasks. It is shown that the implicit linear step of a time-stepping code can serve as a highly effective preconditioner for solving linear systems involving the full Jacobian via conjugate gradient iteration. The methods presented for steady-state solving, continuation, direct calculation of bifurcation points (all via Newton’s method), and linear stability analysis (via the inverse power method) rely on this preconditioning. Another set of methods can have as their basis any time-stepping method. These perform various types of stability analyses: linear stability analysis via the exponential power method, Floquet stability analysis of a limit cycle, and nonlinear stability analysis for determining the character of a bifurcation. All of the methods presented require minimal changes to the time-stepping code.
Journal of Fluid Mechanics | 2008
H. M. Blackburn; Dwight Barkley; Spencer J. Sherwin
Transient energy growths of two- and three-dimensional optimal linear perturbations to two-dimensional flow in a rectangular backward-facing-step geometry with expansion ratio two are presented. Reynolds numbers based on the step height and peak inflow speed are considered in the range 0–500, which is below the value for the onset of three-dimensional asymptotic instability. As is well known, the flow has a strong local convective instability, and the maximum linear transient energy growth values computed here are of order 80×103 at Re = 500. The critical Reynolds number below which there is no growth over any time interval is determined to be Re = 57.7 in the two-dimensional case. The centroidal location of the energy distribution for maximum transient growth is typically downstream of all the stagnation/reattachment points of the steady base flow. Sub-optimal transient modes are also computed and discussed. A direct study of weakly nonlinear effects demonstrates that nonlinearity is stablizing at Re = 500. The optimal three-dimensional disturbances have spanwise wavelength of order ten step heights. Though they have slightly larger growths than two-dimensional cases, they are broadly similar in character. When the inflow of the full nonlinear system is perturbed with white noise, narrowband random velocity perturbations are observed in the downstream channel at locations corresponding to maximum linear transient growth. The centre frequency of this response matches that computed from the streamwise wavelength and mean advection speed of the predicted optimal disturbance. Linkage between the response of the driven flow and the optimal disturbance is further demonstrated by a partition of response energy into velocity components.
Physical Review Letters | 2005
Dwight Barkley; Laurette S. Tuckerman
Turbulent-laminar patterns near transition are simulated in plane Couette flow using an extension of the minimal-flow-unit methodology. Computational domains are of minimal size in two directions but large in the third. The long direction can be tilted at any prescribed angle to the streamwise direction. Three types of patterned states are found and studied: periodic, localized, and intermittent. These correspond closely to observations in large-aspect-ratio experiments.
Physics of Fluids | 1996
Ronald D. Henderson; Dwight Barkley
Secondary instability of flow past a circular cylinder is examined using highly accurate numerical methods. The critical Reynolds number for this instability is found to be Rec=188.5. The secondary instability leads to three‐dimensionality with a spanwise wavelength at onset of 4 cylinder diameters. Three‐dimensional simulations show that this bifurcation is weakly subcritical.
Journal of Fluid Mechanics | 2007
Dwight Barkley; Laurette S. Tuckerman
A turbulent–laminar banded pattern in plane Couette flow is studied numerically. This pattern is statistically steady, is oriented obliquely to the streamwise direction, and has a very large wavelength relative to the gap. The mean flow, averaged in time and in the homogeneous direction, is analysed. The flow in the quasi-laminar region is not the linear Couette profile, but results from a non-trivial balance between advection and diffusion. This force balance yields a first approximation to the relationship between the Reynolds number, angle, and wavelength of the pattern. Remarkably, the variation of the mean flow along the pattern wavevector is found to be almost exactly harmonic: the flow can be represented via only three cross-channel profiles as U(x, y, z) ≈U 0(y )+ U c(y )c os(kz )+ U s(y) sin(kz). A model is formulated which relates the cross-channel profiles of the mean flow and of the Reynolds stress. Regimes computed for a full range of angle and Reynolds number in a tilted rectangular periodic computational domain are presented. Observations of regular turbulent– laminar patterns in other shear flows – Taylor–Couette, rotor–stator, and plane Poiseuille – are compared.
Physica D: Nonlinear Phenomena | 1990
Laurette S. Tuckerman; Dwight Barkley
The bifurcation diagram for the Eckhaus instability is presented, based on the Ginzburg-Landau equation in a finite domain with either free-slip or periodic boundary conditions. The conductive state is shown to undergo a sequence of destabilizing bifurcations giving rise to branches of pure-mode states; all branches but the first are necessarily unstable at onset. Each pure-mode branch undergoes a sequence of secondary restabilizing bifurcations, the last of which is shown to correspond to the Eckhaus instability. The restabilizing bifurcations arise from mode interactions between the pure-mode branches, and can be related directly to the destabilizing bifurcations of the conductive state. The downwards shift of the Eckhaus parabola calculated by Krarner and Zimmerman for the case of finite geometry is stressed. Through a center manifold reduction, it is proved that for the Ginzburg-Landau equation all restabilizing bifurcations of the pure-mode states are subcritical, and hence that the Eckhaus instability is itself subcritical.