Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dwight C. Bradley is active.

Publication


Featured researches published by Dwight C. Bradley.


Geological Society of America Bulletin | 2003

Life and death of the resurrection plate: Evidence for its existence and subduction in the northeastern Pacific in Paleocene-Eocene time

Peter J. Haeussler; Dwight C. Bradley; Ray E. Wells; Marti L. Miller

Onshore evidence suggests that a plate is missing from published reconstructions of the northeastern Pacific Ocean in Paleocene– Eocene time. The Resurrection plate, named for the Resurrection Peninsula ophiolite near Seward, Alaska, was located east of the Kula plate and north of the Farallon plate. We interpret coeval near-trench magmatism in southern Alaska and the Cascadia margin as evidence for two slab windows associated with trench-ridge-trench (TRT) triple junctions, which formed the western and southern boundaries of the Resurrection plate. In Alaska, the Sanak-Baranof belt of near-trench intrusions records a west-to-east migration, from 61 to 50 Ma, of the northern TRT triple junction along a 2100-km-long section of coastline. In Oregon, Washington, and southern Vancouver Island, voluminous basaltic volcanism of the Siletz River Volcanics, Crescent Formation, and Metchosin Volcanics occurred between ca. 66 and 48 Ma. Lack of a clear age progression of magmatism along the Cascadia margin suggests that this southern triple junction did not migrate significantly. Synchronous near-trench magmatism from southeastern Alaska to Puget Sound at ca. 50 Ma documents the middle Eocene subduction of a spreading center, the crest of which was subparallel to the margin. We interpret this ca. 50 Ma event as recording the subduction-zone consumption of the last of the Resurrection plate. The existence and subsequent subduction of the Resurrection plate explains (1) northward terrane transport along the southeastern Alaska–British Columbia margin between 70 and 50 Ma, synchronous with an eastward-migrating triple junction in southern Alaska; (2) rapid uplift and voluminous magmatism in the Coast Mountains of British Columbia prior to 50 Ma related to subduction of buoyant, young oceanic crust of the Resurrection plate; (3) cessation of Coast Mountains magmatism at ca. 50 Ma due to cessation of subduction, (4) primitive mafic magmatism in the Coast Mountains and Cascade Range just after 50 Ma, related to slab-window magmatism, (5) birth of the Queen Charlotte transform margin at ca. 50 Ma, (6) extensional exhumation of high-grade metamorphic terranes and development of core complexes in British Columbia, Idaho, and Washington, and extensional collapse of the Cordilleran foreland fold-and-thrust belt in Alberta, Montana, and Idaho after 50 Ma related to initiation of the transform margin, (7) enigmatic 53–45 Ma magmatism associated with extension from Montana to the Yukon Territory as related to slab breakup and the formation of a slab window, (8) right-lateral margin-parallel strike-slip faulting in southern and western Alaska during Late Cretaceous and Paleocene time, which cannot be explained by Farallon convergence vectors, and (9) simultaneous changes in Pacific-Farallon and Pacific-Kula plate motions concurrent with demise of the Kula-Resurrection Ridge.


Geological Society of America Special Papers | 2003

Geologic signature of early Tertiary ridge subduction in Alaska

Dwight C. Bradley; Timothy M. Kusky; Peter J. Haeussler; Richard J. Goldfarb; Marti L. Miller; Julie A. Dumoulin; Steven W. Nelson; Susan M. Karl

A mid-Paleocene to early Eocene encounter between an oceanic spreading center and a subduction zone produced a wide range of geologic features in Alaska. The most striking effects are seen in the accretionary prism (Chugach-Prince William terrane), where 61 to 50 Ma near-trench granitic to gabbroic plutons were intruded into accreted trench sediments that had been deposited only a few million years earlier. This short time interval also saw the genesis of ophiolites, some of which contain syngenetic massive sulfide deposits; the rapid burial of these ophiolites beneath trench turbidites, followed immediately by obduction; anomalous high-T, low-P, near-trench metamorphism; intense ductile deformation; motion on transverse strike-slip and normal faults; gold mineralization; and uplift of the accretionary prism above sea level. The magmatic arc experienced a brief flare-up followed by quiescence. In the Alaskan interior, 100 to 600 km landward of the paleotrench, several Paleocene to Eocene sedimentary basins underwent episodes of extensional subsidence, accompanied by bimodal volcanism. Even as far as 1000 km inboard of the paleotrench, the ancestral Brooks Range and its foreland basin experienced a pulse of uplift that followed about 40 million years of quiescence. All of these events-but most especially those in the accretionary prism-can be attributed with varying degrees of confidence to the subduction of an oceanic spreading center. In this model, the ophiolites and allied ore deposits were produced at the soon-to-be subducted ridge. Near-trench magmatism, metamorphism, deformation, and gold mineralization took place in the accretionary prism above a slab window, where hot asthenosphere welled up into the gap between the two subducted, but still diverging, plates. Deformation took place as the critically tapered accretionary prism adjusted its shape to changes in the bathymetry of the incoming plate, changes in the convergence direction before and after ridge subduction, and changes in the strength of the prism as it was heated and then cooled. In this model, events in the Alaskan interior would have taken place above more distal, deeper parts of the slab window. Extensional (or transtensional) basin subsidence was driven by the two subducting plates that each exerted different tractions on the upper plate. The magmatic lull along the arc presumably marks a time when hydrated lithosphere was not being subducted beneath the arc axis. The absence of a subducting slab also may explain uplift of the Brooks Range and North Slope: Geodynamic models predict that long-wavelength uplift of this magnitude will take place far inboard from Andean-type margins when a subducting slab is absent. Precise correlations between events in the accretionary prism and the Alaskan interior are hampered, however, by palinspastic problems. During and since the early Tertiary, margin-parallel strike-slip faulting has offset the near-trench plutonic belt-i.e., the very basis for locating the triple junction and slab window-from its backstop, by an amount that remains controversial. Near-trench magmatism began at 61 Ma at Sanak Island in the west but not until 51 Ma at Baranof Island, 2200 km to the east. A west-to-east age progression suggests migration of a trench-ridge-trench triple junction, which we term the Sanak-Baranof triple junction. Most workers have held that the subducted ridge separated the Kula and Farallon plates. As a possible alternative, we suggest that the ridge may have separated the Kula plate from another oceanic plate to the east, which we have termed the Resurrection plate.


Geology | 1995

Link between ridge subduction and gold mineralization in southern Alaska

Peter J. Haeussler; Dwight C. Bradley; Richard J. Goldfarb; Lawrence W. Snee; Cliff D. Taylor

40 Ar/ 39 Ar geochronology reveals that turbidite-hosted gold deposits in the southern Alaska accretionary prism are the same age as nearby near-trench plutons. These early Tertiary plutons and gold lodes formed above a slab window during subduction of an oceanic spreading center. Ridge subduction is a previously unrecognized tectonic process for the generation of lode gold.


The Journal of Geology | 1983

Tectonics of the Acadian Orogeny in New England and Adjacent Canada

Dwight C. Bradley

Paleogeographic analysis of post-Taconian rocks in New England and adjacent parts of Canada has revealed the existence of two volcanic arcs which shut off at the time of the Acadian Orogeny. One was built on arc basement previously accreted to North America during the Taconic Orogeny, the other on Precambrian continental basement of Avalonia. In the intervening Merrimack-Fredericton Trough, metamorphosed and poly deformed turbidites and black shales record deep water conditions in Silurian. Following McKerrow and Ziegler (1971), this tract is interpreted as the site of an ocean which closed in Siluro-Devonian by simultaneous subduction beneath both continental margins. In the Molucca Sea in Indonesia, a comparable arc-arc collision is in an early stage of development; Moore et al. (1982) suggested that an accretionary prism built against one arc is overthrusting its counterpart, which developed on the other side of the ocean. An identical geometry, with an Avalonian accretionary prism overriding the convergent North American margin, is proposed for the Acadian Orogeny in New England to explain these aspects of the regional geology: (1) early west vergent structures in the Merrimack Trough in Maine and New Hampshire, related here to subduction beneath Avalonia; (2) east vergent structures at a deeper structural level in the trough in Connecticut, related to subduction beneath North America (Rodgers 1981); (3) rapid subsidence of the Piscataquis Volcanic Arc beneath a thick pile of east-derived flysch in Devonian; (4) subsequent deep tectonic burial and high grade metamorphism of parts of this belt beneath west-vergent nappes; and (5) only minor Acadian deformation and metamorphism on the Avalonian side of the trough.


Journal of Structural Geology | 1999

Kinematic analysis of mélange fabrics: examples and applications from the McHugh Complex, Kenai Peninsula, Alaska

Timothy M. Kusky; Dwight C. Bradley

Permian to Cretaceous melange of the McHugh Complex on the Kenai Peninsula, south-central Alaska includes blocks and belts of graywacke, argillite, limestone, chert, basalt, gabbro, and ultramafic rocks, intruded by a variety of igneous rocks. An oceanic plate stratigraphy is repeated hundreds of times across the map area, but most structures at the outcrop scale extend lithological layering. Strong rheological units occur as blocks within a matrix that flowed around the competent blocks during deformation, forming broken formation and melange. Deformation was noncoaxial, and disruption of primary layering was a consequence of general strain driven by plate convergence in a relatively narrow zone between the overriding accretionary wedge and the downgoing, generally thinly sedimented oceanic plate. Soft-sediment deformation processes do not appear to have played a major role in the formation of the melange. A model for deformation at the toe of the wedge is proposed in which layers oriented at low angles to s1 are contracted in both the brittle and ductile regimes, layers at 30-458 to s1 are extended in the brittle regime and contracted in the ductile regime, and layers at angles greater than 458 to s1 are extended in both the brittle and ductile regimes. Imbrication in thrust duplexes occurs at deeper levels within the wedge. Many structures within melange of the McHugh Complex are asymmetric and record kinematic information consistent with the inferred structural setting in an accretionary wedge. A displacement field for the McHugh Complex on the lower Kenai Peninsula includes three belts: an inboard belt of Late Triassic rocks records west-to-east-directed slip of hanging walls, a central belt of predominantly Early Jurassic rocks records north-south directed displacements, and Early Cretaceous rocks in an outboard belt preserve southwest-northeast directed slip vectors. Although precise ages of accretion are unknown, slip directions are compatible with inferred plate motions during the general time frame of accretion of the McHugh Complex. The slip vectors are interpreted to preserve the convergence directions between the overriding and underriding plates, which became more oblique with time. They are not considered indicative of strain partitioning into belts of orogen-parallel and orogen-perpendicular displacements, because the kinematic data are derived from the earliest preserved structures, whereas fabrics related to strain partitioning would be expected to be superimposed on earlier accretion-related fabrics. # 1999 Elsevier Science Ltd. All rights reserved.


Tectonics | 1997

Controls on accretion of flysch and mélange belts at convergent margins: Evidence from the Chugach Bay thrust and Iceworm mélange, Chugach accretionary wedge, Alaska

Timothy M. Kusky; Dwight C. Bradley; Peter J. Haeussler; Susan M. Karl

Controls on accretion of flysch and melange terranes at convergent margins are poorly understood. Southern Alaskas Chugach terrane forms the outboard accretionary margin of the Wrangellia composite terrane, and consists of two major lithotectonic units, including Triassic-Cretaceous melange of the McHugh Complex and Late Cretaceous flysch of the Valdez Group. The contact between the McHugh Complex and the Valdez Group on the Kenai Peninsula is a tectonic boundary between chaotically deformed melange of argillite, chert, greenstone, and graywacke of the McHugh Complex and a less chaotically deformed melange of argillite and graywacke of the Valdez Group. We assign the latter to a new, informal unit of formational rank, the Iceworm melange, and interpret it as a contractional fault zone (Chugach Bay thrust) along which the Valdez Group was emplaced beneath the McHugh Complex. The McHugh Complex had already been deformed and metamorphosed to prehnite-pumpellyite facies prior to formation of the Iceworm melange. The Chugach Bay thrust formed between 75 and 55 Ma, as shown by Campanian-Maastrichtian depositional ages of the Valdez Group, and fault-related fabrics in the Iceworm melange that are cut by Paleocene dikes. Motion along the Chugach Bay thrust thus followed Middle to Late Cretaceous collision (circa 90–100 Ma) of the Wrangellia composite terrane with North America. Collision related uplift and erosion of mountains in British Columbia formed a submarine fan on the Farallon plate, and we suggest that attempted subduction of this fan dramatically changed the subduction/accretion style within the Chugach accretionary wedge. We propose a model in which subduction of thinly sedimented plates concentrates shear strains in a narrow zone, generating melanges like the McHugh in accretionary complexes. Subduction of thickly sedimented plates allows wider distribution of shear strains to accommodate plate convergence, generating a more coherent accretionary style including the fold-thrust structures that dominate the outcrop pattern in the Valdez belt. Rapid underplating and frontal accretion of the Valdez Group caused a critical taper adjustment of the accretionary wedge, including exhumation of the metamorphosed McHugh Complex, and its emplacement over the Valdez Group. The Iceworm melange formed in a zone of focused fluid flow at the boundary between the McHugh Complex and Valdez Group during this critical taper adjustment of the wedge to these changing boundary conditions.


Journal of Structural Geology | 1997

Progressive deformation of the Chugach accretionary complex, Alaska, during a paleogene ridge-trench encounter

Timothy M. Kusky; Dwight C. Bradley; Peter J. Haeussler

Abstract The Mesozoic accretionary wedge of south-central Alaska is cut by an array of faults including dextral and sinistral strike-slip faults, synthetic and antithetic thrust faults, and synthetic and antithetic normal faults. The three fault sets are characterized by quartz ± calcite ± chlorite ± prehnite slickensides, and are all relatively late, i.e. all truncate ductile fabrics of the host rocks. Cross-cutting relationships suggest that the thrust fault sets predate the late normal and strike-slip fault sets. Together, the normal and strike-slip fault system exhibits orthorhombic symmetry. Thrust faulting shortened the wedge subhorizontally perpendicular to strike, and then normal and strike-slip faulting extended the wedge oblique to orogenic strike. Strongly curved slickenlines on some faults of each set reveal that displacement directions changed over time. On dip-slip faults (thrust and normal), slickenlines tend to become steeper with younger increments of slip, whereas on strike-slip faults, slickenlines become shallower with younger strain increments. These patterns may result from progressive exhumation of the accretionary wedge while the faults were active, with the curvature of the slickenlines tracking the change from a non-Andersonian stress field at depth to a more Andersonian system (σ 1 or σ 2 nearly vertical) at shallower crustal levels. We interpret this complex fault array as a progressive deformation that is one response to Paleocene-Eocene subduction of the Kula-Farallon spreading center beneath the accretionary complex because: (1) on the Kenai Peninsula, ENE-striking dextral faults of this array exhibit mutually cross-cutting relationships with Paleocene-Eocene dikes related to ridge subduction; and (2) mineralized strike-slip and normal faults of the orthorhombic system have yielded 40 Ar/ 39 Ar ages identical to near-trench intrusives related to ridge subduction. Both features are diachronous along-strike, having formed at circa 65 Ma in the west and 50 Ma in the east. Exhumation of deeper levels of the southern Alaska accretionary wedge and formation of this late fault array is interpreted as a critical taper adjustment to subduction of progressively younger oceanic lithosphere yielding a shallower basal de´collement dip as the Kula-Farallon ridge approached the accretionary prism. The late structures also record different kinematic regimes associated with subduction of different oceanic plates, before and after ridge subduction. Prior to triple junction passage, subduction of the Farallon plate occurred at nearly right angles to the trench axis, whereas after triple junction migration, subduction of the Kula plate involved a significant component of dextral transpression and northward translation of the Chugach terrane. The changes in kinematics are apparent in the sequence of late structures from: (1) thrusting; (2) near-trench plutonism associated with normal + strike-slip faulting; (3) very late gouge-filled dextral faults.


The Journal of Geology | 1986

Geologic Evidence for Rate of Plate Convergence during the Taconic Arc-Continent Collision

Dwight C. Bradley; Timothy M. Kusky

The rate of plate convergence during arc-continent collision can be estimated from the rate at which the secondary effects of subduction move across the underriding plate in advance of the plate boundary. The following sequence of events is typical: (1) shoaling and/or emergence of the continental shelf, presumably caused by lithospheric flexure; (2) rapid subsidence, by a combination of normal faulting and trenchward tilting; and (3) a change from platformal to flysch sedimentation. Such a sequence has been recognized in the Taconic foreland basin in eastern New York and interpreted as being the result of collision between the ancient passive margin of North America and an island arc terrane at an east-dipping subduction zone during Medial Ordovician times. A plot of age versus distance across strike shows that the diachronous migration of these phenomena across the foreland proceeded at rates of 2 to 3 cm/yr; we regard this as the plate convergence rate during the latter part of the Taconic Orogeny. Our result is comparable with modern rates of plate motion and also agrees with an earlier estimate for the Taconic, which was based on the rate at which a series of locations on the outer trench slope passed through fossil-defined isobaths.


Geological Society of America Special Papers | 2003

Controls on intrusion of near-trench magmas of the Sanak-Baranof Belt, Alaska, during Paleogene ridge subduction, and consequences for forearc evolution

Timothy M. Kusky; Dwight C. Bradley; D. Thomas Donely; David B. Rowley; Peter J. Haeussler

A belt of Paleogene near-trench plutons known as the Sanak-Baranof belt intruded the southern Alaska convergent margin. A compilation of isotopic ages of these plutons shows that they range in age from 61 Ma in the west to ca. 50 Ma in the east. This migrating pulse of magmatism along the continental margin is consistent with North Pacific plate reconstructions that suggests the plutons were generated by migration of a trench-ridge-trench triple junction along the margin. On the Kenai Peninsula the regional lower greenschist metamorphic grade of the turbiditic host rocks, texture of the plutons, contact-metamorphic assemblage, and isotopic and fluid inclusion studies suggest that the plutons were emplaced at pressures of 1.5-3.0 kbars (5.2-10.5 km) into a part of the accretionary wedge with an ambient temperature of 210-300 °C. The presence of kyanite, garnet, and cordierite megacrysts in the plutons indicates that the melts were generated at a depth greater than 20 km and minimum temperature of 650 °C. These megacrysts are probably xenocrystic remnants of a restitic or contact metamorphic phase entrained by the melt during intrusion. However, it is also possible that they are primary magmatic phases crystallized from the peraluminous melt. Plutons of the Sanak-Baranof belt serve as time and strain markers separating kinematic regimes that predate and postdate ridge subduction. Pre-ridge subduction structures are interpreted to be related to the interaction between the leading oceanic plate and the Chugach terrane. These include regional thrust faults, NE-striking map-scale folds with associated axial planar foliation, type-1 melanges, and an array of faults within the contact aureole indicating shortening largely accommodated by layer-parallel extension. Syn-ridge subduction features include the plutons, dikes, and ductile shear zones within contact aureoles with syn-kinematic metamorphic mineral growth and foliation development. Many of the studied plutons have sheeted margins and appear to have intruded along extensional jogs in margin-parallel strike-slip faults, whereas others form significant angles with the main faults and may have been influenced by minor faults of other orientations. Some of the plutons of the Sanak-Baranof belt have their long axes oriented parallel to faults of an orthorhombic fault set, implying that these faults may have provided a conduit for magma emplacement. This orthorhombic set of late faults is interpreted to have initially formed during the ridge subduction event, and continued to be active for a short time after passage of the triple junction. ENE-striking dextral faults of this orthorhombic fault system exhibit mutually crosscutting relationships with Eocene dikes related to ridge subduction, and mineralized strike-slip and normal faults of this system have yielded 4 0 Ar/ 3 9 Ar ages identical to near-trench intrusives related to ridge subduction. Movement on the orthorhombic fault system accommodated exhumation of deeper levels of the southern Alaska accretionary wedge, which is interpreted as a critical taper adjustment to subduction of younger oceanic lithosphere during ridge subduction. These faults therefore accommodate both deformation of the wedge and assisted emplacement of near-trench plutons. Structures that crosscut the plutons and aureoles include the orthorhombic fault set and dextral strike-slip faults, reflecting a new kinematic regime established after ridge subduction, during underthrusting of the trailing oceanic plate with new dextral-oblique convergence vectors with the overriding plate. The observation that the orthorhombic fault set both cuts and is cut by Eocene intrusives demonstrates the importance of these faults for magma emplacement in the forearc. A younger, ca. 35 Ma suite of plutons intrudes the Chugach terrane in the Prince William Sound region, and their intrusion geometry was strongly influenced by pre-existing faults developed during ridge subduction


Geological Society of America Special Papers | 2002

Lithostratigraphic, conodont, and other faunal links between lower Paleozoic strata in northern and central Alaska and northeastern Russia

Julie A. Dumoulin; Anita G. Harris; Mussa Gagiev; Dwight C. Bradley; John E. Repetski

Lower Paleozoic platform carbonate strata in northern Alaska (parts of the Arctic Alaska, York, and Seward terranes; herein called the North Alaska carbonate platform) and central Alaska (Farewell terrane) share distinctive lithologic and faunal features, and may have formed on a single continental fragment situated between Siberia and Laurentia. Sedimentary successions in northern and central Alaska overlie Late Proterozoic metamorphosed basement; contain Late Proterozoic ooid-rich dolostones, Middle Cambrian outer shelf deposits, and Ordovician, Silurian, and Devonian shallow-water platform facies, and include fossils of both Siberian and Laurentian biotic provinces. The presence in the Alaskan terranes of Siberian forms not seen in wellstudied cratonal margin sequences of western Laurentia implies that the Alaskan rocks were not attached to Laurentia during the early Paleozoic. The Siberian cratonal succession includes Archean basement, Ordovician shallow-water siliciclastic rocks, and Upper Silurian-Devonian evaporites, none of which have counterparts in the Alaskan successions, and contains only a few of the Laurentian conodonts that occur in Alaska. Thus we conclude that the lower Paleozoic platform successions of northern and central Alaska were not part of the Siberian craton during their deposition, but may have formed on a crustal fragment rifted away from Siberia during the Late Proterozoic. The Alaskan strata have more similarities to coeval rocks in some peri-Siberian terranes of northeastern Russia (Kotelny, Chukotka, and Omulevka). Lithologic ties between northern Alaska, the Farewell terrane, and the peri-Siberian terranes diminish after the Middle Devonian, but Siberian affinities in northern and central Alaskan biotas persist into the late Paleozoic.

Collaboration


Dive into the Dwight C. Bradley's collaboration.

Top Co-Authors

Avatar

Peter J. Haeussler

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Marti L. Miller

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Julie A. Dumoulin

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Timothy M. Kusky

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Susan M. Karl

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Alison B. Till

Geological Society of America

View shared research outputs
Top Co-Authors

Avatar

Anita G. Harris

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

David L. Leach

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Paul W. Layer

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge