Dwight S. Seferos
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dwight S. Seferos.
Angewandte Chemie | 2010
David A. Giljohann; Dwight S. Seferos; Weston L. Daniel; Matthew D. Massich; Pinal C. Patel; Chad A. Mirkin
Gold colloids have fascinated scientists for over a century and are now heavily utilized in chemistry, biology, engineering, and medicine. Today these materials can be synthesized reproducibly, modified with seemingly limitless chemical functional groups, and, in certain cases, characterized with atomic-level precision. This Review highlights recent advances in the synthesis, bioconjugation, and cellular uses of gold nanoconjugates. There are now many examples of highly sensitive and selective assays based upon gold nanoconjugates. In recent years, focus has turned to therapeutic possibilities for such materials. Structures which behave as gene-regulating agents, drug carriers, imaging agents, and photoresponsive therapeutics have been developed and studied in the context of cells and many debilitating diseases. These structures are not simply chosen as alternatives to molecule-based systems, but rather for their new physical and chemical properties, which confer substantive advantages in cellular and medical applications.
Journal of the American Chemical Society | 2009
David A. Giljohann; Dwight S. Seferos; Andrew E. Prigodich; Pinal C. Patel; Chad A. Mirkin
We report the synthesis and characterization of polyvalent RNA-gold nanoparticle conjugates (RNA-Au NPs), nanoparticles that are densely functionalized with synthetic RNA oligonucleotides and designed to function in the RNAi pathway. The particles were rationally designed and synthesized to be free of degrading enzymes, have a high surface loading of siRNA duplexes, and contain an auxiliary passivating agent for increased stability in biological media. The resultant conjugates have a half-life six times longer than that of free dsRNA, readily enter cells without the use of transfection agents, and demonstrate a high gene knockdown capability in a cell model.
Nano Letters | 2009
Dwight S. Seferos; Andrew E. Prigodich; David A. Giljohann; Pinal C. Patel; Chad A. Mirkin
Polyvalent oligonucleotide gold nanoparticle conjugates have unique fundamental properties including distance-dependent plasmon coupling, enhanced binding affinity, and the ability to enter cells and resist enzymatic degradation. Stability in the presence of enzymes is a key consideration for therapeutic uses; however the manner and mechanism by which such nanoparticles are able to resist enzymatic degradation is unknown. Here, we quantify the enhanced stability of polyvalent gold oligonucleotide nanoparticle conjugates with respect to enzyme-catalyzed hydrolysis of DNA and present evidence that the negatively charged surfaces of the nanoparticles and resultant high local salt concentrations are responsible for enhanced stability.
Nano Letters | 2009
Dan Zheng; Dwight S. Seferos; David A. Giljohann; Pinal C. Patel; Chad A. Mirkin
We demonstrate a composite nanomaterial, termed an aptamer nano-flare, that can directly quantify an intracellular analyte in a living cell. Aptamer nano-flares consist of a gold nanoparticle core functionalized with a dense monolayer of nucleic acid aptamers with a high affinity for adenosine triphosphate (ATP). The probes bind selectively to target molecules and release fluorescent reporters which indicate the presence of the analyte. Additionally, these nanoconjugates are readily taken up by cells where their signal intensity can be used to quantify intracellular analyte concentration. These nanoconjugates are a promising approach for the intracellular quantification of other small molecules or proteins, or as agents that use aptamer binding to elicit a biological response in living systems.
Journal of the American Chemical Society | 2012
Gregory L. Gibson; Theresa M. McCormick; Dwight S. Seferos
We have synthesized a series of cyclopentadithiophene-benzochalcogenodiazole donor-acceptor (D-A) copolymers, wherein a single atom in the benzochalcogenodiazole unit is varied from sulfur to selenium to tellurium, which allows us to explicitly study sulfur to selenium to tellurium substitution in D-A copolymers for the first time. The synthesis of S- and Se-containing polymers is straightforward; however, Te-containing polymers must be prepared by postpolymerization single atom substitution. All of the polymers have the representative dual-band optical absorption profile, consisting of both a low- and high-energy optical transition. Optical spectroscopy reveals that heavy atom substitution leads to a red-shift in the low-energy transition, while the high-energy band remains relatively constant in energy. The red-shift in the low-energy transition leads to optical band gap values of 1.59, 1.46, and 1.06 eV for the S-, Se-, and Te-containing polymers, respectively. Additionally, the strength of the low-energy band decreases, while the high-energy band remains constant. These trends cannot be explained by the present D and A theory where optical properties are governed exclusively by the strength of D and A units. A series of optical spectroscopy experiments, solvatochromism studies, density functional theory (DFT) calculations, and time-dependent DFT calculations are used to understand these trends. The red-shift in low-energy absorption is likely due to both a decrease in ionization potential and an increase in bond length and decrease in acceptor aromaticity. The loss of intensity of the low-energy band is likely the result of a loss of electronegativity and the acceptor units ability to separate charge. Overall, in addition to the established theory that difference in electron density of the D and A units controls the band gap, single atom substitution at key positions can be used to control the band gap of D-A copolymers.
Journal of the American Chemical Society | 2010
Jon Hollinger; Ashlee A. Jahnke; Neil Coombs; Dwight S. Seferos
Selenophene-thiophene block copolymers were synthesized and studied. The properties of these novel block copolymers are distinct from those of statistical copolymers prepared from the same monomers with a similar composition. Specifically, the block copolymers exhibit broad and red-shifted absorbance features and phase-separated domains in the solid state. Scanning transmission electron microscopy and topographic elemental mapping confirmed that the domains are either rich in selenophene or thiophene, indicating that the blocks of distinct heterocycles preferentially associate with one another in the solid state. This preference is surprising in view of the chemical similarities between repeat units. The overall results demonstrate a phase separation that is controlled by elemental differences. As a result of this phase separation, these novel conjugated block copolymers should find utility in a variety of studies and optoelectronics uses.
Chemical Society Reviews | 2016
Tyler B. Schon; Bryony T. McAllister; Peng-Fei Li; Dwight S. Seferos
Organic electrode materials are very attractive for electrochemical energy storage devices because they can be flexible, lightweight, low cost, benign to the environment, and used in a variety of device architectures. They are not mere alternatives to more traditional energy storage materials, rather, they have the potential to lead to disruptive technologies. Although organic electrode materials for energy storage have progressed in recent years, there are still significant challenges to overcome before reaching large-scale commercialization. This review provides an overview of energy storage systems as a whole, the metrics that are used to quantify the performance of electrodes, recent strategies that have been investigated to overcome the challenges associated with organic electrode materials, and the use of computational chemistry to design and study new materials and their properties. Design strategies are examined to overcome issues with capacity/capacitance, device voltage, rate capability, and cycling stability in order to guide future work in the area. The use of low cost materials is highlighted as a direction towards commercial realization.
Molecular Pharmaceutics | 2009
Matthew D. Massich; David A. Giljohann; Dwight S. Seferos; Louise E. Ludlow; Curt M. Horvath; Chad A. Mirkin
The immune response of macrophage cells to internalized polyvalent nucleic acid-functionalized gold nanoparticles has been studied. This study finds that the innate immune response (as measured by interferon-beta levels) to densely functionalized, oligonucleotide-modified nanoparticles is significantly less (up to a 25-fold decrease) when compared to a lipoplex carrying the same DNA sequence. The magnitude of this effect is inversely proportional to oligonucleotide density. It is proposed that the enzymes involved in recognizing foreign nucleic acids and triggering the immune response are impeded due to the local surface environment of the particle, in particular high charge density. The net effect is an intracelluar gene regulation agent that elicits a significantly lower cellular immune response than conventional DNA transfection materials.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Pinal C. Patel; David A. Giljohann; Dwight S. Seferos; Chad A. Mirkin
We have designed a heterofunctionalized nanoparticle conjugate consisting of a 13-nm gold nanoparticle (Au NP) containing both antisense oligonucleotides and synthetic peptides. The synthesis of this conjugate is accomplished by mixing thiolated oligonucleotides and cysteine-terminated peptides with gold nanoparticles in the presence of salt, which screens interactions between biomolecules, yielding a densely functionalized nanomaterial. By controlling the stoichiometry of the components in solution, we can control the surface loading of each biomolecule. The conjugates are prepared easily and show perinuclear localization and an enhanced gene regulation activity when tested in a cellular model. This heterofunctionalized structure represents a new strategy for preparing nanomaterials with potential therapeutic applications.
Journal of the American Chemical Society | 2015
Graham E. Garrett; Gregory L. Gibson; Rita N. Straus; Dwight S. Seferos; Mark S. Taylor
Chalcogen bonding is the noncovalent interaction between an electron-deficient, covalently bonded chalcogen (Te, Se, S) and a Lewis base. Although substantial evidence supports the existence of chalcogen bonding in the solid state, quantitative data regarding the strengths of the interactions in the solution phase are lacking. Herein, determinations of the association constants of benzotelluradiazoles with a variety of Lewis bases (Cl(-), Br(-), I(-), NO3(-) and quinuclidine, in organic solvent) are described. The participation of the benzotelluradiazoles in chalcogen bonding interactions was probed by UV-vis, (1)H and (19)F NMR spectroscopy as well as nano-ESI mass spectrometry. Trends in the free energy of chalcogen bonds upon variation of the donor, acceptor and solvent are evident from these data, including a linear free energy relationship between chalcogen bond donor ability and calculated electrostatic potential at the tellurium center. Calculations using the dispersion-corrected B97-D3 functional were found to give good agreement with the experimental free energies of chalcogen bonding.