Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. A. Braga is active.

Publication


Featured researches published by E. A. Braga.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis

Koen Dreijerink; E. A. Braga; Igor Kuzmin; Laura Geil; Fuh-Mei Duh; Debora Angeloni; Berton Zbar; Michael I. Lerman; Eric J. Stanbridge; John D. Minna; Alexei Protopopov; Jingfeng Li; George Klein; Eugene R. Zabarovsky

Clear cell-type renal cell carcinomas (clear RCC) are characterized almost universally by loss of heterozygosity on chromosome 3p, which usually involves any combination of three regions: 3p25-p26 (harboring the VHL gene), 3p12-p14.2 (containing the FHIT gene), and 3p21-p22, implying inactivation of the resident tumor-suppressor genes (TSGs). For the 3p21-p22 region, the affected TSGs remain, at present, unknown. Recently, the RAS association family 1 gene (isoform RASSF1A), located at 3p21.3, has been identified as a candidate lung and breast TSG. In this report, we demonstrate aberrant silencing by hypermethylation of RASSF1A in both VHL-caused clear RCC tumors and clear RCC without VHL inactivation. We found hypermethylation of RASSF1As GC-rich putative promoter region in most of analyzed samples, including 39 of 43 primary tumors (91%). The promoter was methylated partially or completely in all 18 RCC cell lines analyzed. Methylation of the GC-rich putative RASSF1A promoter region and loss of transcription of the corresponding mRNA were related causally. RASSF1A expression was reactivated after treatment with 5-aza-2′-deoxycytidine. Forced expression of RASSF1A transcripts in KRC/Y, a renal carcinoma cell line containing a normal and expressed VHL gene, suppressed growth on plastic dishes and anchorage-independent colony formation in soft agar. Mutant RASSF1A had reduced growth suppression activity significantly. These data suggest that RASSF1A is the candidate renal TSG gene for the 3p21.3 region.


Oncogene | 2004

Discovery of frequent homozygous deletions in chromosome 3p21.3 LUCA and AP20 regions in renal, lung and breast carcinomas.

Vera N. Senchenko; Jian Liu; Witaly Loginov; Igor Bazov; Debora Angeloni; Yury Seryogin; V. D. Ermilova; T. P. Kazubskaya; R. F. Garkavtseva; Veronika Zabarovska; Lev L. Kisselev; John D. Minna; Michael I. Lerman; George Klein; E. A. Braga; Eugene R. Zabarovsky

We searched for chromosome 3p homo- and hemizygous losses in 23 lung cancer cell lines, 53 renal cell and 22 breast carcinoma biopsies using 31 microsatellite markers located in frequently deleted 3p regions. In addition, two sequence-tagged site markers (NLJ-003 and NL3-001) located in the Alu-PCR clone 20 region (AP20) and lung cancer (LUCA) regions, respectively, were used for quantitative real-time PCR (QPCR). We found frequent (10–18%) homozygous deletions (HDs) in both 3p21.3 regions in the biopsies and lung cancer cell lines. In addition, we discovered that amplification of 3p is a very common (15–42.5%) event in these cancers and probably in other epithelial malignancies. QPCR showed that aberrations of either NLJ-003 or NL3-001 were detected in more than 90% of all studied cases. HDs were frequently detected simultaneously both in NLJ-003 or NL3-001 loci in the same tumour (P<3–10−7). This observation suggests that tumour suppressor genes (TSG) in these regions could have a synergistic effect. The exceptionally high frequency of chromosome aberrations in NLJ-003 and NL3-001 loci suggests that multiple TSG(s) involved in different malignancies are located very near to these markers. Precise mapping of 15 independent HDs in the LUCA region allowed us to establish the smallest HD region in 3p21.3C located between D3S1568 (CACNA2D2 gene) and D3S4604 (SEMA3F gene). This region contains 17 genes. Mapping of 19 HDs in the AP20 region resulted in the localization of the minimal region to the interval flanked by D3S1298 and D3S3623 markers. Only four genes were discovered in this interval, namely, APRG1, ITGA9, HYA22 and VILL.


Cancer Research | 2004

Functional Characterization of the Candidate Tumor Suppressor Gene NPRL2/G21 Located in 3p21.3C

Jingfeng Li; Fuli Wang; Klas Haraldson; A. I. Protopopov; Fuh Mei Duh; Laura Geil; Igor Kuzmin; John D. Minna; Eric J. Stanbridge; E. A. Braga; Vladimir I. Kashuba; George Klein; Michael I. Lerman; Eugene R. Zabarovsky

Initial analysis identified the NPRL2/G21 gene located in 3p21.3C, the lung cancer region, as a strong candidate tumor suppressor gene. Here we provide additional evidence of the tumor suppressor function of NPRL2/G21. The gene has highly conserved homologs/orthologs ranging from yeast to humans. The yeast ortholog, NPR2, shows three highly conserved regions with 32 to 36% identity over the whole length. By sequence analysis, the main product of NPRL2/G21 encodes a soluble protein that has a bipartite nuclear localization signal, a protein-binding domain, similarity to the MutS core domain, and a newly identified nitrogen permease regulator 2 domain with unknown function. The gene is highly expressed in many tissues. We report inactivating mutations in a variety of tumors and cancer cell lines, growth suppression of tumor cells with tet-controlled NPRL2/G21 transgenes on plastic Petri dishes, and suppression of tumor formation in SCID mice. Screening of 7 renal, 5 lung, and 7 cervical carcinoma cell lines showed homozygous deletions in the 3′ end of NPRL2 in 2 renal, 3 lung, and 1 cervical (HeLa) cell line. Deletions in the 3′ part of NPRL2 could result in improper splicing, leading to the loss of the 1.8 kb functional NPRL2 mRNA. We speculate that the NPRL2/G21 nuclear protein may be involved in mismatch repair, cell cycle checkpoint signaling, and activation of apoptotic pathway(s). The yeast NPR2 was shown to be a target of cisplatin, suggesting that the human NPRL2/G21 may play a similar role. At least two homozygous deletions of NPRL2/G21 were detected in 6 tumor biopsies from various locations and with microsatellite instability. This study, together with previously obtained results, indicates that NPRL2 is a multiple tumor suppressor gene.


Oncogene | 2003

Deletion mapping using quantitative real-time PCR identifies two distinct 3p21.3 regions affected in most cervical carcinomas

Vera N. Senchenko; Jian Liu; E. A. Braga; Natalia Mazurenko; Witaly Loginov; Yury Seryogin; Igor Bazov; Alexei Protopopov; Fedor Kisseljov; Michael I. Lerman; George Klein; Eugene R. Zabarovsky

We report chromosome 3p deletion mapping of 32 cervical carcinoma (CC) biopsies using 26 microsatellite markers located in frequently deleted 3p regions to detect loss of heterozygosity and homozygous loss. In addition, two STS markers (NLJ-003 and NL3-001) located in the 3p21.3 telomeric (3p21.3T) and 3p21.3 centromeric (3p21.3C) regions, respectively, were used for quantitative real-time PCR as TaqMan probes. We show that quantitative real-time PCR is reliable and sensitive and allows discriminating between 0, 1 and 2 marker copies per human genome. For the first time, frequent (five of 32 cases, i.e. 15.6%) homozygous deletions were demonstrated in CCs in both 3p21.3T and 3p21.3C regions. The smallest region homozygously deleted in 3p21.3C was located between D3S1568 (CACNA2D2 gene) and D3S4604 (SEMA3F gene) and contains 17 genes previously defined as lung cancer candidate Tumor suppressor genes (TSG(s)). The smallest region homozygously deleted in 3p21.3T was flanked by D3S1298 and NL1-024 (D3S4285), excluding DLEC1 and MYD88 as candidate TSGs involved in cervical carcinogenesis. Overall, this region contains five potential candidates, namely GOLGA4, APRG1, ITGA9, HYA22 and VILL, which need to be analysed. The data showed that aberrations of either NLJ-003 or NL3-001 were detected in 29 cases (90.6%) and most likely have a synergistic effect (P<0.01). The study also demonstrated that aberrations in 3p21.3 were complex and in addition to deletions, may involve gene amplification as well. The results strongly suggest that 3p21.3T and 3p21.3C regions harbor genes involved in the origin and/or development of CCs and imply that those genes might be multiple TSG(s).


Proceedings of the National Academy of Sciences of the United States of America | 2002

NotI subtraction and NotI-specific microarrays to detect copy number and methylation changes in whole genomes

Jingfeng Li; Alexei Protopopov; Fuli Wang; Vera N. Senchenko; Valentin Petushkov; Olga Vorontsova; Lev Petrenko; Veronika Zabarovska; O. V. Muravenko; E. A. Braga; Lev L. Kisselev; Michael I. Lerman; George Klein; Ingemar Ernberg; Claes Wahlestedt; Eugene R. Zabarovsky

Methylation, deletions, and amplifications of cancer genes constitute important mechanisms in carcinogenesis. For genome-wide analysis of these changes, we propose the use of NotI clone microarrays and genomic subtraction, because NotI recognition sites are closely associated with CpG islands and genes. We show here that the CODE (Cloning Of DEleted sequences) genomic subtraction procedure can be adapted to NotI flanking sequences and to CpG islands. Because the sequence complexity of this procedure is greatly reduced, only two cycles of subtraction are required. A NotI-CODE procedure can be used to prepare NotI representations (NRs) containing 0.1–0.5% of the total DNA. The NRs contain, on average, 10-fold less repetitive sequences than the whole human genome and can be used as probes for hybridization to NotI microarrays. These microarrays, when probed with NRs, can simultaneously detect copy number changes and methylation. NotI microarrays offer a powerful tool with which to study carcinogenesis.


International Journal of Cancer | 2002

Critical tumor-suppressor gene regions on chromosome 3P in major human epithelial malignancies: Allelotyping and quantitative real-time PCR

E. A. Braga; Vera N. Senchenko; Igor Bazov; Witaly Loginov; Jian Liu; V. D. Ermilova; T. P. Kazubskaya; R. F. Garkavtseva; Natalia Mazurenko; Fedor Kisseljov; Michael I. Lerman; George Klein; Lev L. Kisselev; Eugene R. Zabarovsky

To ascertain the involvement of human chromosome 3p and its established critical TSG regions in various epithelial malignancies, 21 polymorphic and 2 nonpolymorphic 3p markers were allelotyped in nonpapillary RCC, NSCLC, CC and BC from a total of 184 patients. LOH was observed with high frequency in all types of cancer studied: RCC (52/57, 91%), BC (41/51, 80%), NSCLC (30/40, 75%) and CC (27/36, 75%). Interstitial deletions, believed to signal TSG inactivation, were verified using the “L‐allele rule” and real‐time quantitative PCR. Significant correlation was observed between DNA copy numbers for 2 nonpolymorphic STS markers and LOH data for adjacent polymorphic loci. Interstitial deletions in 3p were demonstrated for all cancer types studied. However, the distribution of different types of deletion was characteristic for tumors from various locations. Large terminal deletions were predominantly seen in RCC and NSCLC (51% and 40%, respectively), correlating with clear cell RCC and squamous cell carcinomas of the lung. In addition to the LUCA region at 3p21.3 (centromeric), we found that the AP20 region (3p21.3, telomeric) was frequently affected in all 4 cancers, suggesting that this newly defined critical region contains multiple TSGs. Moreover, at least 3 candidate cancer‐specific loci were identified. The telomeric 3p26.1‐p25.3 region was predominantly deleted in RCC and NSCLC. The D3S1286 and D3S3047 markers (3p25.2‐p24.3) were deleted nonrandomly in NSCLC. High‐frequency LOH was detected in a segment mapped closely distal to the LUCA site (3p21.3), around the D3S2409 and D3S2456 markers.


PLOS ONE | 2011

Differential Expression of CHL1 Gene during Development of Major Human Cancers

Vera N. Senchenko; George S. Krasnov; Alexey A. Dmitriev; Anna V. Kudryavtseva; Ekaterina A. Anedchenko; E. A. Braga; I. V. Pronina; Tatiana T. Kondratieva; Sergey V. Ivanov; Eugene R. Zabarovsky; Michael I. Lerman

Background CHL1 gene (also known as CALL) on 3p26.3 encodes a one-pass trans-membrane cell adhesion molecule (CAM). Previously CAMs of this type, including L1, were shown to be involved in cancer growth and metastasis. Methodology/Principal Findings We used Clontech Cancer Profiling Arrays (19 different types of cancers, 395 samples) to analyze expression of the CHL1 gene. The results were further validated by RT-qPCR for breast, renal and lung cancer. Cancer Profiling Arrays revealed differential expression of the gene: down-regulation/silencing in a majority of primary tumors and up-regulation associated with invasive/metastatic growth. Frequent down-regulation (>40% of cases) was detected in 11 types of cancer (breast, kidney, rectum, colon, thyroid, stomach, skin, small intestine, bladder, vulva and pancreatic cancer) and frequent up-regulation (>40% of cases) – in 5 types (lung, ovary, uterus, liver and trachea) of cancer. Using real-time quantitative PCR (RT-qPCR) we found that CHL1 expression was decreased in 61% of breast, 60% of lung, 87% of clear cell and 89% papillary renal cancer specimens (P<0.03 for all the cases). There was a higher frequency of CHL1 mRNA decrease in lung squamous cell carcinoma compared to adenocarcinoma (81% vs. 38%, P = 0.02) without association with tumor progression. Conclusions/Significance Our results suggested that CHL1 is involved in the development of different human cancers. Initially, during the primary tumor growth CHL1 could act as a putative tumor suppressor and is silenced to facilitate in situ tumor growth for 11 cancer types. We also suggested that re-expression of the gene on the edge of tumor mass might promote local invasive growth and enable further metastatic spread in ovary, colon and breast cancer. Our data also supported the role of CHL1 as a potentially novel specific biomarker in the early pathogenesis of two major histological types of renal cancer.


Epigenetics | 2012

Genetic and epigenetic analysis of non-small cell lung cancer with NotI-microarrays

Alexey A. Dmitriev; Klas Haraldson; Vera N. Senchenko; Tatiana V. Pavlova; Anna V. Kudryavtseva; Ekaterina A. Anedchenko; George S. Krasnov; I. V. Pronina; Vitalij I. Loginov; Tatiana T. Kondratieva; T. P. Kazubskaya; E. A. Braga; Surya Pavan Yenamandra; Ilya Ignatjev; Ingemar Ernberg; George Klein; Michael I. Lerman; Eugene R. Zabarovsky

This study aimed to clarify genetic and epigenetic alterations that occur during lung carcinogenesis and to design perspective sets of newly identified biomarkers. The original method includes chromosome 3 specific NotI-microarrays containing 180 NotI clones associated with genes for hybridization with 40 paired normal/tumor DNA samples of primary lung tumors: 28 squamous cell carcinomas (SCC) and 12 adenocarcinomas (ADC). The NotI-microarray data were confirmed by qPCR and bisulfite sequencing analyses. Forty-four genes showed methylation and/or deletions in more than 15% of non–small cell lung cancer (NSCLC) samples. In general, SCC samples were more frequently methylated/deleted than ADC. Moreover, the SCC alterations were observed already at stage I of tumor development, whereas in ADC many genes showed tumor progression specific methylation/deletions. Among genes frequently methylated/deleted in NSCLC, only a few were already known tumor suppressor genes: RBSP3 (CTDSPL), VHL and THRB. The RPL32, LOC285205, FGD5 and other genes were previously not shown to be involved in lung carcinogenesis. Ten methylated genes, i.e., IQSEC1, RBSP3, ITGA9, FOXP1, LRRN1, GNAI2, VHL, FGD5, ALDH1L1 and BCL6 were tested for expression by qPCR and were found downregulated in the majority of cases. Three genes (RBSP3, FBLN2 and ITGA9) demonstrated strong cell growth inhibition activity. A comprehensive statistical analysis suggested the set of 19 gene markers, ANKRD28, BHLHE40, CGGBP1, RBSP3, EPHB1, FGD5, FOXP1, GORASP1/TTC21, IQSEC1, ITGA9, LOC285375, LRRC3B, LRRN1, MITF, NKIRAS1/RPL15, TRH, UBE2E2, VHL, WNT7A, to allow early detection, tumor progression, metastases and to discriminate between SCC and ADC with sensitivity and specificity of 80–100%.


FEBS Letters | 1999

Loss of heterozygosity in tumor cells requires re‐evaluation: the data are biased by the size‐dependent differential sensitivity of allele detection

Jian Liu; Veronika Zabarovska; E. A. Braga; Andrei Alimov; George Klein; Eugene R. Zabarovsky

Normal tissue contamination of tumors may eclipse the detection of loss of heterozygosity (LOH) by microsatellite analysis and may also hamper isolation of tumor suppressor genes. To test the potential impact of this problem, we prepared artificial mixtures of mouse‐human microcell hybrid lines that carried different alleles of the same chromosome 3 marker. After performing an allele titration assay, we found a consistent difference between the LOH of a high molecular weight (H) allele and the LOH of a low molecular weight (L) allele of the same CA repeat marker. It follows that normal tissue admixtures will be less of a problem when LOH affects a H allele than with a L allele. Random screening of 100 papers published between 1994 and 1999 revealed that the loss of a L allele was recorded at about half the frequency (52%) of loss of a H allele. To avoid this bias, we have developed rules for the evaluation of LOH data. We suggest that the loss of a L allele should be given more weight than the loss of a H allele in LOH studies using microsatellite markers.


Oncogene | 2007

Hypermethylation of Ron proximal promoter associates with lack of full-length Ron and transcription of oncogenic short-Ron from an internal promoter

Debora Angeloni; Alla Danilkovitch-Miagkova; T. A. Ivanova; E. A. Braga; Eugene R. Zabarovsky; Michael I. Lerman

The gene for tyrosine-kinase receptor Ron (MST1R) resides in the chromosome 3p21.3 region, frequently affected in common human malignancies. The gene generates two transcripts, 5 and 2 kb-long, full-length Ron (flRon) and short-form Ron (sfRon), respectively. Here, we show for the first time that the variegated Ron expression is associated with variations in the methylation patterns of two distinct CpG islands in Ron proximal promoter. Widespread hypermethylation associates with lack of flRon whereas hypermethylation of the distal island associates with transcription of sfRon, a constitutively active tyrosine-kinase that drives cell proliferation. sfRon inhibition with kinase-dead transgenes decreases cancer cell growth and induces cellular differentiation. sfRon could be a new drug target in cancer types in which it contributes to tumor progression.

Collaboration


Dive into the E. A. Braga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. V. Pronina

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Michael I. Lerman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Vera N. Senchenko

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lev L. Kisselev

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Alexey A. Dmitriev

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Anna V. Kudryavtseva

Engelhardt Institute of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Eugene Klimov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

George S. Krasnov

Engelhardt Institute of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge