E A Sagitova
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E A Sagitova.
Laser Physics | 2010
D. E. Gen; K. B. Chernyshov; K. A. Prokhorov; G. Yu. Nikolaeva; E A Sagitova; Pavel P. Pashinin; A. A. Kovalchuk; A. N. Klyamkina; P. M. Nedorezova; V. A. Optov; Boris Shklyaruk
The polarized Raman spectroscopy is employed in the study of structural modifications in the films of isotactic polypropylene (PP) whose chain contains ethylene, 1-butene, 1-hexene, 1-octene, and 4-metyl-pentene-1, which represents an isomer of 1-hexene. It is demonstrated that the phase and conformational compositions of copolymer molecules depend on the comonomer content and the side-chain length of the second monomer. The content of the PP molecules in the helical conformation in the crystalline and amorphous phases of the copolymers monotonically decreases with increasing content of the second monomer. The decrease in the content of helical macromolecules in the crystalline phase is faster than the decrease in the amorphous phase. At a certain content of comonomers, the total content of the helical fragments decreases with increasing length of the side chain of the second monomer. The structures and Raman spectra of the copolymers of propylene with 1-hexene and 4-methyl-1-pentene are similar.
Journal of Physical Chemistry B | 2009
E A Sagitova; Patrice Donfack; K. A. Prokhorov; Goulnara Yu. Nikolaeva; V. A. Gerasin; Nadezhda D. Merekalova; Arnulf Materny; E. M. Antipov; Pavel P. Pashinin
Raman spectroscopy has been applied for the rapid and nondestructive monitoring of the interlayer structure of sodium montmorillonite (MMT) clay modified by ditetradecyl dimethyl ammonium (DDA+) bromide. This work demonstrates that a detailed analysis of Raman spectra in the fingerprint region (600-1600 cm(-1)), in combination with model simulation, allows one to distinguish different conformational states of DDA+ in the interlayer space of the modified clay, namely, a liquidlike state but rich in trans conformers, disordered conformational states, and a crystallike conformation appearing at increasing modifier content. These conformations differ in the angle between their alkyl chains, the relative content of trans and gauche conformers and the relative length of trans segments. The shape and width of the Raman band at 1300 cm(-1) and the peak intensity ratio I1088/I1064 can be used for a qualitative analysis of the ratio of gauche/trans conformers. The integral intensity ratios I*1064/I*1300 and I*1300/I*705 help to determine the proportion of trans conformers and the content of the modifier in the clay, respectively, thereof providing quantitative characterization of the modified clay (conformational reorganization and modifier content). Noteworthy, the transition from a liquidlike to crystal-like conformation is further supported by the splitting of the symmetric C-C stretching Raman band of the trans segments within the alkyl chains at 1133 cm(-1) (liquidlike conformation) into two modes at 1124 and 1135 cm(-1) corresponding to two parallel trans chains of nonequivalent lengths (crystal-like conformation).
Laser Physics | 2009
Yu. V. Shemouratov; K. A. Prokhorov; E A Sagitova; G. Yu. Nikolaeva; Pavel P. Pashinin; Yu. A. Lebedev; E. M. Antipov
The Raman spectra of the blends that result from the melt mixing of polyethylene (PE) and isotactic polypropylene (PP) are studied. The contents of the blend components can be determined using the ratio of the integral intensities of the PE and PP fundamental vibrations.
Laser Physics | 2011
D. E. Gen; K. A. Prokhorov; G. Yu. Nikolaeva; E A Sagitova; Pavel P. Pashinin; Boris Shklyaruk; E. M. Antipov
The Raman spectra of the α, γ, and smectic modifications of isotactic polypropylene (PP) are studied. The most significant spectral differences are observed in the frequency range around 2960 cm−1 for the spectral doublet assigned to the asymmetric stretching vibrations of the CH3 groups and in the frequency range around 800 cm−1, which is used for analysis of the phase composition of isotactic PP. It is demonstrated that the peak positions and relative intensities of the doublet assigned to the asymmetric stretching vibrations of the CH3 groups can be used to identify the polymorph modifications of isotactic PP.
Laser Physics | 2008
E A Sagitova; K. A. Prokhorov; G. Yu. Nikolaeva; Pavel P. Pashinin; V. A. Gerasin; M. A. Guseva; E. M. Antipov
Raman spectroscopy is used to study variations in the orientational order of macromolecules in the uniaxially drawn intercalated nanocomposites based on two polymer matrices (polyethylene (PE) and isotactic polypropylene (PP)) and a filler (modified clay (MC)). The orientation parameters of macromolecules measured using Raman spectroscopy are compared with the X-ray data. It is demonstrated that, for the uniaxially drawn PE-MC and PP-MC intercalated nanocomposites, the filler impedes the orientation along the draw direction for the macromolecules localized in the noncrystalline phase of the polymer matrix. The orientational ability of the PE and PP crystallites in nanocomposites is not affected by the filler.
Journal of Physical Chemistry B | 2012
E A Sagitova; Patrice Donfack; K. A. Prokhorov; Goulnara Yu. Nikolaeva; V. A. Gerasin; Nadezhda D. Merekalova; Arnulf Materny; E. M. Antipov; Pavel P. Pashinin
Exploiting Raman spectroscopy and computational modeling, for the first time, we report and explain an interesting phenomenon in clay modified by cetyltrimethylammonium bromide. A splitting of the CH(2)-chains symmetric C-C stretching Raman mode found at ~1128 cm(-1) in cetyltrimethylammonium bromide into two bands at 1128 and 1139 cm(-1) in clay modified by cetyltrimethylammonium bromide is observed. We demonstrate that this splitting appears if two types of trans-segments with nonequivalent lengths and terminal groups coexist in the CH(2)-chain of the alkylammonium ion embedded into the clay interlayer space. We report Raman experimental evidence for a CH(2)-chain bending within the clay galleries, resulting in the symmetric C-C stretching band splitting, as was also suggested by computational modeling. Noteworthy, we postulate that this unique behavior based on CH(2)-chain bending provides a general understanding of conformation reorganization and switching within long CH(2)-chain molecules confined within modified clay interlayer galleries. For all modifier concentrations, we show that the intercalated cetyltrimethylammonium ions exist in a liquid-like state, consisting mainly of trans conformations (~86%) of two types in approximately equal proportions. Moreover, we demonstrate that the integral Raman intensity ratio I(1295)(CH(2))/I(705)(clay) provides a rapid nondestructive quantification of the relative content of alkylammonium ions in modified clays. These results demonstrate that a simple direct monitoring of specific modifier-dependent interlayer conformational states is possible, which is of great importance for a tunable fabrication of modified clays-based nanocomposites with desired properties.
Laser Physics | 2013
Yu.V. Zavgorodnev; K. A. Prokhorov; G. Yu. Nikolaeva; E A Sagitova; Pavel P. Pashinin; T. M. Ushakova; L. A. Novokshonova; E.E. Starchak; V G Krasheninnikov
For the first time we carried out a detailed Raman study of reactor blends of high-density ultrahigh molecular weight polyethylene (UHMW PE) with random ethylene/1-hexene copolymers (CEHs). The blends were produced by consecutive two-step polymerization in the presence of rac-Me2Si(Ind)2ZrCl2/methylaluminoxane catalyst. The blends differed significantly in the CEH content as well as in the 1-hexene content in the CEH. We revealed a strong dependence of the Raman spectra of the blends on their structure. We found out that an increase in both the CEH content in the blend and the 1-hexene content in the CEH causes a reduction of the blend crystallinity and the total content of trans-conformers, while an increase in the content of gauche-conformers is observed. To investigate the effect of molecular weight on the neat polyethylene (PE) structure and Raman spectrum, we analyzed three neat PE samples with molecular weights of 34 000, 750 000, and 1 000 000. In order to better understand general regularities in the spectra, Raman spectra of solid n-alkanes C18H38 and C36H74 were also studied.
Journal of Physics: Conference Series | 2017
G. Yu. Nikolaeva; E A Sagitova; K. A. Prokhorov; Pavel P. Pashinin; P. M. Nedorezova; Alla N. Klyamkina; M. A. Guseva; V. A. Gerasin
We present Raman structural study of two grades of random propylene/1-octene copolymers with low and high molecular weights and the 1-octene content up to 4.5 mole %. The copolymer spectra are compared with the spectra of the α, γ, and smectic modifications of isotactic polypropylene. Raman investigation has showed that the degree of crystallinity and conformational order of the copolymer macromolecules slightly decrease with the growth of the 1-octene content. The degree of crystallinity is slightly higher for the samples of the high-molecular-weight grade compared to the low-molecular-weight one. Furthermore, we present Raman spectra of polyethylene/polypropylene (90/10) blends, mixed in the polyethylene melt at three different temperatures, corresponding to three different states of polypropylene macromolecules. It was concluded that the degree of crystallinity and conformational order of the polyethylene macromolecules in the blends are the highest for the temperature, at which polypropylene macromolecules have lost their packing and conformational order.
Journal of Physics: Conference Series | 2015
Yu.V. Zavgorodnev; S N Chvalun; G. Yu. Nikolaeva; E A Sagitova; Pavel P. Pashinin; Sergey Gordeyev; K. A. Prokhorov
We present for the first time a Raman spectroscopic study of the deformation process of solution-crystallized single-crystal mats of ultrahigh molecular weight linear polyethylene (UHMW PE). We study the deformed regions of the films, drawn only until the formation of the neck, and the films of much higher draw ratios, just before rupture starts. For comparison, we have also carried out Raman investigations of films produced by compression of UHMW PE powder. We have found that the uniaxial molecular orientation in the neck region of the single-crystal mat films develops more slowly as compared to the films, prepared by compression of the UHMW PE powder.
Laser Physics | 2012
K. A. Prokhorov; G. Yu. Nikolaeva; E A Sagitova; A. A. Mischenko; Pavel P. Pashinin; P. M. Nedorezova; A. N. Klyamkina; A. V. Chapurina; A. A. Kovalchuk; Boris Shklyaruk
Nascent form of random propylene/1-pentene copolymers was studied for the first time by Raman spectroscopy. For the purpose of detailed interpretation of the copolymer spectra, we investigated Raman spectra of neat PP with low and high crystallinity. It was found that the copolymer Raman spectra depend on the 1-pentene content. We registered the most significant spectral alterations in two lines at 809 and 841 cm−1. The first line corresponds to vibrations of polypropylene (PP) isotactic chains in the crystalline phase, while the second one is associated with vibrations of PP isotactic chains having isomeric defects. We found out that increase in the 1-pentene content results in reduction of the copolymer crystallinity and in the content of isotactic chains in the copolymer amorphous phase.