E. Adli
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Adli.
Nature | 2015
S. Corde; E. Adli; J. Allen; Weiming An; Christine Clarke; C. E. Clayton; Jean-Pierre Delahaye; J. Frederico; Spencer Gessner; Selina Green; M.J. Hogan; C. Joshi; Nate Lipkowitz; M. Litos; W. Lu; K. A. Marsh; W. B. Mori; Margaux Schmeltz; N. Vafaei-Najafabadi; D. Walz; V. Yakimenko; Gerald Yocky
Electrical breakdown sets a limit on the kinetic energy that particles in a conventional radio-frequency accelerator can reach. New accelerator concepts must be developed to achieve higher energies and to make future particle colliders more compact and affordable. The plasma wakefield accelerator (PWFA) embodies one such concept, in which the electric field of a plasma wake excited by a bunch of charged particles (such as electrons) is used to accelerate a trailing bunch of particles. To apply plasma acceleration to electron–positron colliders, it is imperative that both the electrons and their antimatter counterpart, the positrons, are efficiently accelerated at high fields using plasmas. Although substantial progress has recently been reported on high-field, high-efficiency acceleration of electrons in a PWFA powered by an electron bunch, such an electron-driven wake is unsuitable for the acceleration and focusing of a positron bunch. Here we demonstrate a new regime of PWFAs where particles in the front of a single positron bunch transfer their energy to a substantial number of those in the rear of the same bunch by exciting a wakefield in the plasma. In the process, the accelerating field is altered—‘self-loaded’—so that about a billion positrons gain five gigaelectronvolts of energy with a narrow energy spread over a distance of just 1.3 metres. They extract about 30 per cent of the wake’s energy and form a spectrally distinct bunch with a root-mean-square energy spread as low as 1.8 per cent. This ability to transfer energy efficiently from the front to the rear within a single positron bunch makes the PWFA scheme very attractive as an energy booster to an electron–positron collider.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2016
E. Gschwendtner; E. Adli; L. D. Amorim; Robert Apsimon; R. Assmann; A.M. Bachmann; F. Batsch; J. Bauche; V. K. Berglyd Olsen; M. Bernardini; R. Bingham; B. Biskup; T. Bohl; C. Bracco; Philip Burrows; Graeme Burt; B. Buttenschön; A. Butterworth; A. Caldwell; M. Cascella; Eric Chevallay; S. Cipiccia; H. Damerau; L. Deacon; P. Dirksen; S. Doebert; Ulrich Dorda; J. Farmer; Valentin Fedosseev; Eduard Feldbaumer
The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world׳s first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.
arXiv: Accelerator Physics | 2013
E. Adli; Jean-Pierre Delahaye; Spencer Gessner; Mark Hogan; T. Raubenheimer; Weiming An; C. Joshi; W. B. Mori
Plasma wakefield acceleration (PWFA) holds much promise for advancing the energy frontier because it can potentially provide a 1000-fold or more increase in acceleration gradient with excellent power efficiency in respect with standard technologies. Most of the advances in beam-driven plasma wakefield acceleration were obtained by a UCLA/USC/SLAC collaboration working at the SLAC FFTB[ ]. These experiments have shown that plasmas can accelerate and focus both electron and positron high energy beams, and an accelerating gradient in excess of 50 GeV/m can be sustained in an 85 cm-long plasma. The FFTB experiments were essentially proof-of-principle experiments that showed the great potential of plasma accelerators. The FACET[ ] test facility at SLAC will in the period 2012-2016 further study several issues that are directly related to the applicability of PWFA to a high-energy collider, in particular two-beam acceleration where the witness beam experiences high beam loading (required for high efficiency), small energy spread and small emittance dilution (required to achieve luminosity). The PWFA-LC concept presented in this document is an attempt to find the best design that takes advantage of the PWFA, identify the critical parameters to be achieved and eventually the necessary R&D to address their feasibility. It best benefits from the extensive R&D that has been performed for conventional rf linear colliders during the last twenty years, especially ILC[ ] and CLIC[ ], with a potential for a comparably lower power consumption and cost.
Plasma Physics and Controlled Fusion | 2014
Selina Green; E. Adli; Christine Clarke; S. Corde; S A Edstrom; A S Fisher; J. Frederico; J C Frisch; Spencer Gessner; S Gilevich; P Hering; Mark Hogan; R K Jobe; M. Litos; J E May; D. Walz; V. Yakimenko; C. E. Clayton; C. Joshi; K. A. Marsh; N. Vafaei-Najafabadi; P. Muggli
The Facility for Advanced Accelerator and Experimental Tests (FACET) at SLAC installed a 10-TW Ti : sapphire laser system for pre-ionized plasma wakefield acceleration experiments. High energy (500 mJ), short (50 fs) pulses of 800 nm laser light at 1 Hz are used at the FACET experimental area to produce a plasma column. The laser pulses are stretched to 250 fs before injection into a vapor cell, where the laser is focused by an axicon lens to form a plasma column that can be sustained over the desired radius and length. A 20 GeV electron bunch interacts with this preformed plasma to generate a non-linear wakefield, thus accelerating a trailing witness bunch with gradients on the order of several GV m−1. The experimental setup and the methods for producing the pre-ionized plasma for plasma wakefield acceleration experiments performed at FACET are described.
ieee particle accelerator conference | 2007
Igor Syratchev; Daniel Schulte; E. Adli; M. Taborelli
The CLIC power extraction and transfer structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design.
Nature Communications | 2016
Spencer Gessner; E. Adli; J. Allen; Weiming An; Christine Clarke; C. E. Clayton; S. Corde; Jean-Pierre Delahaye; J. Frederico; Selina Green; C. Hast; Mark Hogan; C. Joshi; Carl Lindstrøm; Nate Lipkowitz; M. Litos; Wei Lu; Kenneth A. Marsh; W. B. Mori; Brendan O’Shea; N. Vafaei-Najafabadi; D. Walz; V. Yakimenko; Gerald Yocky
Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m−1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.
Plasma Physics and Controlled Fusion | 2016
M. Litos; E. Adli; J. Allen; Weiming An; Christine Clarke; S. Corde; C. E. Clayton; J. Frederico; Spencer Gessner; Selina Green; Mark Hogan; C. Joshi; Wei Lu; K. A. Marsh; W. B. Mori; M Schmeltz; N. Vafaei-Najafabadi; V. Yakimenko
An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV/m at the spectral peak. The mean energy spread of the data set was 5.1%. These results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.
Reviews of Accelerator Science and Technology | 2016
E. Adli; P. Muggli
We describe the main ideas, promises and challenges related to proton-driven plasma wakefield acceleration. Existing high-energy proton beams have the potential to accelerate electron beams to the TeV scale in a single plasma stage. In order to drive a wake effectively the available beams must be either highly compressed or microbunched. The self-modulation instability has been suggested as a way to microbunch the proton beams. The AWAKE project at CERN is currently the only planned proton-driven plasma acceleration experiment. A self-modulated CERN SPS beam will be used to drive a plasma wake. We describe the design choices and experimental setup for AWAKE, and discuss briefly the short-term objectives as well as longer-term ideas for the project.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2018
Carl Lindstrøm; Simon M. Hooker; K.N. Sjobak; R. Corsini; J. H. Röckemann; L. Schaper; D. Gamba; A.E. Dyson; Wilfrid Farabolini; E. Adli; J. Osterhoff
Abstract Discharge capillary-based active plasma lenses are a promising new technology for strongly focusing charged particle beams, especially when combined with novel high gradient acceleration methods. Still, many questions remain concerning such lenses, including their transverse field uniformity, limitations due to plasma wakefields and whether they can be combined in multi-lens lattices in a way to cancel chromaticity. These questions will be addressed in a new plasma lens experiment at the CLEAR User Facility at CERN. All the subsystems have been constructed, tested and integrated into the CLEAR beam line, and are ready for experiments starting late 2017.
Nature | 2018
E. Adli; A. Ahuja; O. Apsimon; Robert Apsimon; A.-M. Bachmann; D. Barrientos; F. Batsch; J. Bauche; V. K. Berglyd Olsen; M. Bernardini; T. Bohl; Chiara Bracco; F. Braunmüller; Graeme Burt; B. Buttenschön; A. Caldwell; M. Cascella; J. Chappell; Eric Chevallay; M. Chung; D. Cooke; H. Damerau; L. Deacon; L.H. Deubner; Amos Dexter; S. Doebert; J. Farmer; V. N. Fedosseev; R. Fiorito; Ricardo Fonseca
High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration1–5, in which the electrons in a plasma are excited, leading to strong electric fields (so called ‘wakefields’), is one such promising acceleration technique. Experiments have shown that an intense laser pulse6–9 or electron bunch10,11 traversing a plasma can drive electric fields of tens of gigavolts per metre and above—well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies5,12. The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage13. Long, thin proton bunches can be used because they undergo a process called self-modulation14–16, a particle–plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN17–19 uses high-intensity proton bunches—in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules—to drive a wakefield in a ten-metre-long plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage20 means that our results are an important step towards the development of future high-energy particle accelerators21,22.Electron acceleration to very high energies is achieved in a single step by injecting electrons into a ‘wake’ of charge created in a 10-metre-long plasma by speeding long proton bunches.