Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Alejandro Sweet-Cordero is active.

Publication


Featured researches published by E. Alejandro Sweet-Cordero.


Journal of Clinical Investigation | 2010

Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis and senescence in mouse and human models

Silvestre Vicent; Ron Chen; Leanne C. Sayles; Chenwei Lin; Randal G. Walker; Anna K. Gillespie; Aravind Subramanian; Gregory Hinkle; Xiaoping Yang; Sakina Saif; David E. Root; Vicki Huff; William C. Hahn; E. Alejandro Sweet-Cordero

KRAS is one of the most frequently mutated human oncogenes. In some settings, oncogenic KRAS can trigger cellular senescence, whereas in others it produces hyperproliferation. Elucidating the mechanisms regulating these 2 drastically distinct outcomes would help identify novel therapeutic approaches in RAS-driven cancers. Using a combination of functional genomics and mouse genetics, we identified a role for the transcription factor Wilms tumor 1 (WT1) as a critical regulator of senescence and proliferation downstream of oncogenic KRAS signaling. Deletion or suppression of Wt1 led to senescence of mouse primary cells expressing physiological levels of oncogenic Kras but had no effect on wild-type cells, and Wt1 loss decreased tumor burden in a mouse model of Kras-driven lung cancer. In human lung cancer cell lines dependent on oncogenic KRAS, WT1 loss decreased proliferation and induced senescence. Furthermore, WT1 inactivation defined a gene expression signature that was prognostic of survival only in lung cancer patients exhibiting evidence of oncogenic KRAS activation. These findings reveal an unexpected role for WT1 as a key regulator of the genetic network of oncogenic KRAS and provide important insight into the mechanisms that regulate proliferation or senescence in response to oncogenic signals.


Cancer Cell | 2013

A Rare Population of CD24+ITGB4+Notchhi Cells Drives Tumor Propagation in NSCLC and Requires Notch3 for Self-Renewal

Yanyan Zheng; Cecile de la Cruz; Leanne C. Sayles; Chris Alleyne-Chin; Dedeepya Vaka; Tim D. Knaak; Marty Bigos; Yue Xu; Chuong D. Hoang; Joseph B. Shrager; Hans Joerg Fehling; Dorothy French; William F. Forrest; Zhaoshi Jiang; Richard A. D. Carano; Kai H. Barck; Erica Jackson; E. Alejandro Sweet-Cordero

Sustained tumor progression has been attributed to a distinct population of tumor-propagating cells (TPCs). To identify TPCs relevant to lung cancer pathogenesis, we investigated functional heterogeneity in tumor cells isolated from Kras-driven mouse models of non-small-cell lung cancer (NSCLC). CD24(+)ITGB4(+)Notch(hi) cells are capable of propagating tumor growth in both a clonogenic and an orthotopic serial transplantation assay. While all four Notch receptors mark TPCs, Notch3 plays a nonredundant role in tumor cell propagation in two mouse models and in human NSCLC. The TPC population is enriched after chemotherapy, and the gene signature of mouse TPCs correlates with poor prognosis in human NSCLC. The role of Notch3 in tumor propagation may provide a therapeutic target for NSCLC.


Science Translational Medicine | 2013

Blocking NRG1 and Other Ligand-Mediated Her4 Signaling Enhances the Magnitude and Duration of the Chemotherapeutic Response of Non–Small Cell Lung Cancer

Ganapati V. Hegde; Cecile de la Cruz; Cecilia Chiu; Navneet Alag; Gabriele Schaefer; Lisa Crocker; Sarajane Ross; David M. Goldenberg; Mark Merchant; Janet Tien; Lily Shao; Leslie Roth; Siao-Ping Tsai; Scott Stawicki; Zhaoyu Jin; Shelby K. Wyatt; Richard A. D. Carano; Yanyan Zheng; E. Alejandro Sweet-Cordero; Yan Wu; Erica Jackson

Inhibition of Her4 signaling enhances the response to chemotherapy and delays tumor regrowth after cessation of treatment. Regaining the Yellow Jersey Professional sports—from cycling to football and even baseball—are now cracking down on doping. The use of performance-enhancing drugs is thought to give an unfair advantage, and regulatory agencies are trying to return everyone to even ground. But whereas athletes who dope become pariahs, in some fights it’s better not to play fair. Now, Hegde et al. suggest a way to enhance chemotherapy in the fight against non–small cell lung cancer (NSCLC). Chemotherapy is a first-line treatment for NSCLC but, in some cases, cannot either adequately remove the tumor or prevent recurrence. The authors use multiple models of NSCLC and find that residual tumor cells after chemotherapy express high levels of neuregulin 1 (NRG1), which is a ligand for human epidermal growth factor receptor 3 and 4 (HER3/4). Inhibited NRG1 signaling had only variable effects on primary tumor growth, but significantly enhanced the magnitude and duration of tumor response to chemotherapy. NRG1 inhibition in combination with chemotherapy greatly impeded relapse. Although this combination remains to be tested in the clinic, this study suggests that when it comes to a competition between NSCLC and chemotherapy, all’s fair. Although standard chemotherapies are commonly used to treat most types of solid tumors, such treatment often results in inadequate response to, or relapse after, therapy. This is particularly relevant for lung cancer because most patients are diagnosed with advanced-stage disease and are treated with frontline chemotherapy. By studying the residual tumor cells that remain after chemotherapy in several in vivo non–small cell lung cancer models, we found that these cells have increased levels of human epidermal growth factor receptor (HER) signaling due, in part, to the enrichment of a preexisting NRG1HI subpopulation. Neuregulin 1 (NRG1) signaling in these models can be mediated by either the HER3 or HER4 receptor, resulting in the differential activation of downstream effectors. Inhibition of NRG1 signaling inhibits primary tumor growth and enhances the magnitude and duration of the response to chemotherapy. Moreover, we show that inhibition of ligand-mediated Her4 signaling impedes disease relapse in cases where NRG1 inhibition is insufficient. These findings demonstrate that ligand-dependent Her4 signaling plays an important role in disease relapse.


Journal of Clinical Investigation | 2014

Long noncoding RNA EWSAT1-mediated gene repression facilitates Ewing sarcoma oncogenesis

Michelle Marques Howarth; David Simpson; Siu P. Ngok; Bethsaida Nieves; Ron Chen; Zurab Siprashvili; Dedeepya Vaka; Marcus Breese; Brian D. Crompton; Gabriela Alexe; Doug S. Hawkins; Damon Jacobson; Alayne L Brunner; Robert B. West; Jaume Mora; Kimberly Stegmaier; Paul A. Khavari; E. Alejandro Sweet-Cordero

Chromosomal translocation that results in fusion of the genes encoding RNA-binding protein EWS and transcription factor FLI1 (EWS-FLI1) is pathognomonic for Ewing sarcoma. EWS-FLI1 alters gene expression through mechanisms that are not completely understood. We performed RNA sequencing (RNAseq) analysis on primary pediatric human mesenchymal progenitor cells (pMPCs) expressing EWS-FLI1 in order to identify gene targets of this oncoprotein. We determined that long noncoding RNA-277 (Ewing sarcoma-associated transcript 1 [EWSAT1]) is upregulated by EWS-FLI1 in pMPCs. Inhibition of EWSAT1 expression diminished the ability of Ewing sarcoma cell lines to proliferate and form colonies in soft agar, whereas EWSAT1 inhibition had no effect on other cell types tested. Expression of EWS-FLI1 and EWSAT1 repressed gene expression, and a substantial fraction of targets that were repressed by EWS-FLI1 were also repressed by EWSAT1. Analysis of RNAseq data from primary human Ewing sarcoma further supported a role for EWSAT1 in mediating gene repression. We identified heterogeneous nuclear ribonucleoprotein (HNRNPK) as an RNA-binding protein that interacts with EWSAT1 and found a marked overlap in HNRNPK-repressed genes and those repressed by EWS-FLI1 and EWSAT1, suggesting that HNRNPK participates in EWSAT1-mediated gene repression. Together, our data reveal that EWSAT1 is a downstream target of EWS-FLI1 that facilitates the development of Ewing sarcoma via the repression of target genes.


Nature Medicine | 2017

Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis

Chen-Hua Chuang; Peyton Greenside; Zoë N. Rogers; Jennifer J. Brady; Dian Yang; Rosanna K. Ma; Deborah R. Caswell; Shin-Heng Chiou; Aidan F Winters; Barbara M. Grüner; Gokul Ramaswami; Andrew L Spencley; Kimberly E Kopecky; Leanne C. Sayles; E. Alejandro Sweet-Cordero; Jin Billy Li; Anshul Kundaje; Monte M. Winslow

Lung cancer is the leading cause of cancer deaths worldwide, with the majority of mortality resulting from metastatic spread. However, the molecular mechanism by which cancer cells acquire the ability to disseminate from primary tumors, seed distant organs, and grow into tissue-destructive metastases remains incompletely understood. We combined tumor barcoding in a mouse model of human lung adenocarcinoma with unbiased genomic approaches to identify a transcriptional program that confers metastatic ability and predicts patient survival. Small-scale in vivo screening identified several genes, including Cd109, that encode novel pro-metastatic factors. We uncovered signaling mediated by Janus kinases (Jaks) and the transcription factor Stat3 as a critical, pharmacologically targetable effector of CD109-driven lung cancer metastasis. In summary, by coupling the systematic genomic analysis of purified cancer cells in distinct malignant states from mouse models with extensive human validation, we uncovered several key regulators of metastatic ability, including an actionable pro-metastatic CD109–Jak–Stat3 axis.


Oncotarget | 2017

Combined experience of six independent laboratories attempting to create an Ewing sarcoma mouse model

Tsion Zewdu Minas; Didier Surdez; Tahereh Javaheri; Miwa Tanaka; Michelle Marques Howarth; Hong-Jun Kang; Jenny Han; Zhi-Yan Han; Barbara Sax; Barbara E. Kream; Sung-Hyeok Hong; Haydar Çelik; Franck Tirode; Jan Tuckermann; Jeffrey A. Toretsky; Lukas Kenner; Heinrich Kovar; Sean Lee; E. Alejandro Sweet-Cordero; Takuro Nakamura; Richard Moriggl; Olivier Delattre; Aykut Üren

Ewing sarcoma (ES) involves a tumor-specific chromosomal translocation that produces the EWS-FLI1 protein, which is required for the growth of ES cells both in vitro and in vivo. However, an EWS-FLI1-driven transgenic mouse model is not currently available. Here, we present data from six independent laboratories seeking an alternative approach to express EWS-FLI1 in different murine tissues. We used the Runx2, Col1a2.3, Col1a3.6, Prx1, CAG, Nse, NEFL, Dermo1, P0, Sox9 and Osterix promoters to target EWS-FLI1 or Cre expression. Additional approaches included the induction of an endogenous chromosomal translocation, in utero knock-in, and the injection of Cre-expressing adenovirus to induce EWS-FLI1 expression locally in multiple lineages. Most models resulted in embryonic lethality or developmental defects. EWS-FLI1-induced apoptosis, promoter leakiness, the lack of potential cofactors, and the difficulty of expressing EWS-FLI1 in specific sites were considered the primary reasons for the failed attempts to create a transgenic mouse model of ES.


Nature Communications | 2017

An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer

Adrian Vallejo; Naiara Perurena; Elisabet Guruceaga; Pawel K. Mazur; Susana Martínez-Canarias; Carolina Zandueta; Karmele Valencia; Andrea Arricibita; Dana Gwinn; Leanne C. Sayles; Chen-Hua Chuang; Laura Guembe; Peter Bailey; David K. Chang; Andrew V. Biankin; Mariano Ponz-Sarvisé; Jesper B. Andersen; Purvesh Khatri; Aline Bozec; E. Alejandro Sweet-Cordero; Julien Sage; Fernando Lecanda; Silve Vicent

KRAS mutated tumours represent a large fraction of human cancers, but the vast majority remains refractory to current clinical therapies. Thus, a deeper understanding of the molecular mechanisms triggered by KRAS oncogene may yield alternative therapeutic strategies. Here we report the identification of a common transcriptional signature across mutant KRAS cancers of distinct tissue origin that includes the transcription factor FOSL1. High FOSL1 expression identifies mutant KRAS lung and pancreatic cancer patients with the worst survival outcome. Furthermore, FOSL1 genetic inhibition is detrimental to both KRAS-driven tumour types. Mechanistically, FOSL1 links the KRAS oncogene to components of the mitotic machinery, a pathway previously postulated to function orthogonally to oncogenic KRAS. FOSL1 targets include AURKA, whose inhibition impairs viability of mutant KRAS cells. Lastly, combination of AURKA and MEK inhibitors induces a deleterious effect on mutant KRAS cells. Our findings unveil KRAS downstream effectors that provide opportunities to treat KRAS-driven cancers.


PLOS ONE | 2012

Residual Tumor Cells That Drive Disease Relapse after Chemotherapy Do Not Have Enhanced Tumor Initiating Capacity

Ganapati V. Hegde; Cecile de la Cruz; Jeffrey Eastham-Anderson; Yanyan Zheng; E. Alejandro Sweet-Cordero; Erica Jackson

Although chemotherapy is used to treat most advanced solid tumors, recurrent disease is still the major cause of cancer-related mortality. Cancer stem cells (CSCs) have been the focus of intense research in recent years because they provide a possible explanation for disease relapse. However, the precise role of CSCs in recurrent disease remains poorly understood and surprisingly little attention has been focused on studying the cells responsible for re-initiating tumor growth within the original host after chemotherapy treatment. We utilized both xenograft and genetically engineered mouse models of non-small cell lung cancer (NSCLC) to characterize the residual tumor cells that survive chemotherapy treatment and go on to cause tumor regrowth, which we refer to as tumor re-initiating cells (TRICs). We set out to determine whether TRICs display characteristics of CSCs, and whether assays used to define CSCs also provide an accurate readout of a cell’s ability to cause tumor recurrence. We did not find consistent enrichment of CSC marker positive cells or enhanced tumor initiating potential in TRICs. However, TRICs from all models do appear to be in EMT, a state that has been linked to chemoresistance in numerous types of cancer. Thus, the standard CSC assays may not accurately reflect a cell’s ability to drive disease recurrence.


Cancer Discovery | 2013

Two Is Better Than One: Combining IGF1R and MEK Blockade as a Promising Novel Treatment Strategy Against KRAS-Mutant Lung Cancer

Ron Chen; E. Alejandro Sweet-Cordero

A small-molecule inhibitor screen on a panel of human lung cancer cell lines has uncovered an unexpected sensitivity of cells expressing oncogenic KRAS toward insulin-like growth factor 1 receptor (IGF1R) inhibition. Combining IGF1R and MAP-ERK kinase blockade led to significant effects on viability in human non-small cell lung cancer (NSCLC) cell lines and in 2 mouse models of oncogenic KRAS-driven lung cancer. The mechanistic basis for this effect seems to be an increased baseline activation of IGF1R-mediated activation of AKT in cells that express oncogenic KRAS. The studies thus point to a novel approach for treatment of KRAS-driven NSCLC, a particularly difficult subset of patients to treat with existing approaches.


Molecular Cell | 2013

The Phosphatase PP2A Links Glutamine to the Tumor Suppressor p53

Dana Gwinn; E. Alejandro Sweet-Cordero

In this issue of Molecular Cell, Reid et al. (2013) show that glutamine withdrawal causes PP2A-mediated activation of p53 through its regulator EDD, linking levels of a critical metabolite to an important regulator of cell survival and proliferation.

Collaboration


Dive into the E. Alejandro Sweet-Cordero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge