E. Auvinet
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Auvinet.
Gait & Posture | 2015
E. Auvinet; Franck Multon; Carl-Eric Aubin; Jean Meunier; Maxime Raison
Treadmill walking is commonly used to analyze several gait cycles in a limited space. Depth cameras, such as the low-cost and easy-to-use Kinect sensor, look promising for gait analysis on a treadmill for routine outpatient clinics. However, gait analysis is based on accurately detecting gait events (such as heel-strike) by tracking the feet which may be incorrectly recognized with Kinect. Indeed depth images could lead to confusion between the ground and the feet around the contact phase. To tackle this problem we assume that heel-strike events could be indirectly estimated by searching for extreme values of the distance between knee joints along the walking longitudinal axis. To evaluate this assumption, the motion of 11 healthy subjects walking on a treadmill was recorded using both an optoelectronic system and Kinect. The measures were compared to reference heel-strike events obtained with vertical foot velocity. When using the optoelectronic system to assess knee joints, heel-strike estimation errors were very small (29±18ms) leading to small cycle durations errors (0±15ms). To locate knees in depth map (Kinect), we used anthropometrical data to select the body point located at a constant height where the knee should be based on a reference posture. This Kinect approach gave heel-strike errors of 17±24ms (mean cycle duration error: 0±12ms). Using this same anthropometric methodology with optoelectronic data, the heel-strike error was 12±12ms (mean cycle duration error: 0±11ms). Compared to previous studies using Kinect, heel-strike and gait cycles were more accurately estimated, which could improve clinical gait analysis with such sensor.
Orthopaedics & Traumatology-surgery & Research | 2017
C. Rivière; F. Iranpour; E. Auvinet; Stephen M. Howell; Pascal-André Vendittoli; Justin Cobb; S. Parratte
In spite of improvements in implant designs and surgical precision, functional outcomes of mechanically aligned total knee arthroplasty (MA TKA) have plateaued. This suggests probable technical intrinsic limitations that few alternate more anatomical recently promoted surgical techniques are trying to solve. This review aims at (1) classifying the different options to frontally align TKA implants, (2) at comparing their safety and efficacy with the one from MA TKAs, therefore answering the following questions: does alternative techniques to position TKA improve functional outcomes of TKA (question 1)? Is there any pathoanatomy not suitable for kinematic implantation of a TKA (question 2)? A systematic review of the existing literature utilizing PubMed and Google Scholar search engines was performed in February 2017. Only studies published in peer-reviewed journals over the last ten years in either English or French were reviewed. We identified 569 reports, of which 13 met our eligibility criteria. Four alternative techniques to position a TKA are challenging the traditional MA technique: anatomic (AA), adjusted mechanical (aMA), kinematic (KA), and restricted kinematic (rKA) alignment techniques. Regarding osteoarthritic patients with slight to mid constitutional knee frontal deformity, the KA technique enables a faster recovery and generally generates higher functional TKA outcomes than the MA technique. Kinematic alignment for TKA is a new attractive technique for TKA at early to mid-term, but need longer follow-up in order to assess its true value. It is probable that some forms of pathoanatomy might affect longer-term clinical outcomes of KA TKA and make the rKA technique or additional surgical corrections (realignment osteotomy, retinacular ligament reconstruction etc.) relevant for this sub-group of patients. Longer follow-up is needed to define the best indication of each alternative surgical technique for TKA. Level I for question 1 (systematic review of Level I studies), level 4 for question 2.
Orthopaedics & Traumatology-surgery & Research | 2017
C. Rivière; F. Iranpour; E. Auvinet; A. Aframian; K. Asare; S. Harris; Justin Cobb; S. Parratte
BACKGROUND Mechanically aligned (MA) total knee arthroplasty (TKA) is affected by disappointing functional outcomes in spite of the recent improvements in surgical precision and implant designs. This might suggest the existence of intrinsic technical limitations. Our study aims to compare the prosthetic and native trochlear articular surfaces and to estimate the extent of collateral ligament imbalance, which is technically uncorrectable by collateral ligament release when TKA implants are mechanically aligned. STUDY HYPOTHESIS Conventional MA technique generates a high rate of prosthetic overstuffing of the distal groove, distal lateral trochlear facet and distal lateral femoral condyle (Hypothesis 1), and technically uncorrectable collateral ligament imbalance (hypothesis 2)? Disregarding the distal femoral joint line obliquity (DFJLO) when performing femoral cuts explains distal lateral femoral prosthetic stuffing and uncorrectable imbalance (hypothesis 3)? METHODS Twenty patients underwent a conventional MA TKA. Pre-operative MRI-based 3D knee models were generated and MA TKA was simulated. Native and prosthetic trochlear articular surfaces were compared using in-house analysis software. Following the automatic determination by the planning software of the size of the extension and flexion gaps, an algorithm was applied to balance the gaps and the frequency and amplitude of technically uncorrectable knee imbalance were estimated. RESULTS The conventional MA technique generates a significant slight distal lateral femoral prosthetic overstuffing (mean 0.6mm, 0.8mm, 1.25mm for the most distal lateral facet point, groove, and at the most distal point of lateral femoral condyle, respectively) and a high rate of type 1 and 2 uncorrectable knee imbalance (30% and 40%, respectively). The incidence of distal lateral prosthetic overstuffing (trochlea and condyle) and uncorrectable knee imbalance were strongly to very strongly correlated with the DFJLO (r=0.53 to 0.89). CONCLUSION Conventional MA technique for TKA generates frequent lateral distal femoral prosthetic overstuffing and technically uncorrectable knee imbalance secondary to disregarding the DFJLO when adjusting the femoral component frontal and axial rotations, respectively. LEVEL OF EVIDENCE level 4.
Gait & Posture | 2017
E. Auvinet; Franck Multon; Victoria Manning; Jean Meunier; Justin Cobb
Gait asymmetry information is a key point in disease screening and follow-up. Constant Relative Phase (CRP) has been used to quantify within-stride asymmetry index, which requires noise-free and accurate motion capture, which is difficult to obtain in clinical settings. This study explores a new index, the Longitudinal Asymmetry Index (ILong) which is derived using data from a low-cost depth camera (Kinect). ILong is based on depth images averaged over several gait cycles, rather than derived joint positions or angles. This study aims to evaluate (1) the validity of CRP computed with Kinect, (2) the validity and sensitivity of ILong for measuring gait asymmetry based solely on data provided by a depth camera, (3) the clinical applicability of a posteriorly mounted camera system to avoid occlusion caused by the standard front-fitted treadmill consoles and (4) the number of strides needed to reliably calculate ILong. The gait of 15 subjects was recorded concurrently with a marker-based system (MBS) and Kinect, and asymmetry was artificially reproduced by introducing a 5cm sole attached to one foot. CRP computed with Kinect was not reliable. ILong detected this disturbed gait reliably and could be computed from a posteriorly placed Kinect without loss of validity. A minimum of five strides was needed to achieve a correlation coefficient of 0.9 between standard MBS and low-cost depth camera based ILong. ILong provides a clinically pragmatic method for measuring gait asymmetry, with application for improved patient care through enhanced disease, screening, diagnosis and monitoring.
Orthopaedics & Traumatology-surgery & Research | 2018
C. Rivière; Fatima Dhaif; Hemina Shah; Adam M Ali; E. Auvinet; A. Aframian; Justin Cobb; Stephen M. Howell; S. Harris
INTRODUCTION Preserving constitutional patellofemoral anatomy, and thus producing physiological patellofemoral kinematics, could prevent patellofemoral complications and improve clinical outcomes after kinematically aligned TKA (KA TKA). Our study aims 1) to compare the native and prosthetic trochleae (planned or implanted), and 2) to estimate the safety of implanting a larger Persona® femoral component size matching the proximal lateral trochlea facet height (flange area) in order to reduce the native articular surfaces understuffing generated by the prosthetic KA trochlea. METHODS Persona® femoral component 3D model was virtually kinematically aligned on 3D bone-cartilage models of healthy knees by using a conventional KA technique (group 1, 36models, planned KA TKA) or an alternative KA technique (AT KA TKA) aiming to match the proximal (flange area) lateral facet height (10 models, planned AT KA TKA). Also, 13postoperative bone-implant (KA Persona®) models were co-registered to the same coordinate geometry as their preoperative bone-cartilage models (group 2implanted KA TKA). In-house analysis software was used to compare native and prosthetic trochlea articular surfaces and medio-lateral implant overhangs for every group. RESULTS The planned and performed prosthetic trochleae were similar and valgus oriented (6.1 and 8.5, respectively), substantially proximally understuffed compared to the native trochlea. The AT KA TKAs shows a high rate of native trochlea surface overstuffing (70%, 90%, and 100% for lateral facet, groove, medial facet) and mediolateral implant overhang (60%). There was no overstuffing with conventional KA TKAs having their anterior femoral cut flush. CONCLUSION We found that with both the planned and implanted femoral components, the KA Persona® trochlea was more valgus oriented and understuffed compared to the native trochlear anatomy. In addition, restoring the lateral trochlea facet height by increasing the femoral component size generated a high rate of trochlea overstuffing and mediolateral implant overhang. While restoring a native trochlea with KA TKA is not possible, the clinical impact of this is low, especially on PF complications. In current practice it is better to undersize the implants even if it does not restore the native anatomy. Longer follow-up is needed for KA TKAs performed with current implant, and the debate of developing new, more anatomic, implants specifically designed for KA technique is now opened. LEVEL OF EVIDENCE II, Laboratory controlled study.
Gait & Posture | 2018
A. Choudhury; R. Lambkin; E. Auvinet; F. Iranpour; D. Tennent; Caroline B. Hing; Justin Cobb
Patellofemoral osteoarthritis (PFOA) affects 32% men and 36% women over the age of 60years and is associated with anterior knee pain, stiffness, and poor mobility. Patellofemoral arthroplasty (PFA)...
Orthopaedics & Traumatology-surgery & Research | 2017
C. Rivière; F. Iranpour; S. Harris; E. Auvinet; A. Aframian; Patrick Chabrand; Justin Cobb
Orthopaedics & Traumatology-surgery & Research | 2017
C. Rivière; F. Iranpour; S. Harris; E. Auvinet; A. Aframian; S. Parratte; Justin Cobb
Orthopaedics & Traumatology-surgery & Research | 2017
C. Rivière; J.-Y. Lazennec; C. Van Der Straeten; E. Auvinet; Justin Cobb; Sarah Muirhead-Allwood
Journal of Bone and Joint Surgery-british Volume | 2016
F. Iranpour; E. Auvinet; S. Harris; Justin Cobb