E. D. Freeland
Fermilab
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. D. Freeland.
Physical Review Letters | 2005
C. Aubin; C. Bernard; Carleton DeTar; M. Di Pierro; E. D. Freeland; Steven Gottlieb; U. M. Heller; James Edward Hetrick; A. X. El-Khadra; Andreas S. Kronfeld; L. Levkova; Paul B. Mackenzie; D. Menscher; F. Maresca; M. Nobes; M. Okamoto; Dru B. Renner; James N. Simone; R. L. Sugar; D. Toussaint; Howard D. Trottier
We present the first lattice QCD calculation with realistic sea quark content of the D+-meson decay constant f(D+). We use the MILC Collaborations publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). We obtain f(D+)=201+/-3+/-17 MeV, where the errors are statistical and a combination of systematic errors. We also obtain f(Ds)=249+/-3+/-16 MeV for the Ds meson.
Physical Review D | 2009
C. Bernard; Carleton DeTar; M. Di Pierro; A. X. El-Khadra; R. T. Evans; E. D. Freeland; E. Gamiz; Steven Gottlieb; U. M. Heller; James Edward Hetrick; Andreas S. Kronfeld; J. Laiho; L. Levkova; Paul B. Mackenzie; M. Okamoto; James N. Simone; R. L. Sugar; D. Toussaint; R. S. Van De Water
We present the first lattice QCD calculation of the form factor for B → D*lv with three flavors of sea quarks. We use an improved staggered action for the light valence and sea quarks (the MILC configurations), and the Fermilab action for the heavy quarks. The form factor is computed at zero recoil using a new double ratio method that yields the form factor more directly than the previous Fermilab method. Other improvements over the previous calculation include the use of much lighter light-quark masses, and the use of lattice (staggered) chiral perturbation theory in order to control the light-quark discretization errors and chiral extrapolation. We obtain for the form factor, F B→D * (1) = 0.921(13)(20), where the first error is statistical and the second is the sum of all systematic errors in quadrature. Applying a 0.7% electromagnetic correction and taking the latest PDG average for F B→D * (1)|V cb | leads to |V rb | = (38.7 ± 0.9 exp ± 1.0 theo ) X 10 -3 .
Physical Review Letters | 2012
Jon A. Bailey; A. Bazavov; C. Bernard; C. M. Bouchard; Carleton E. DeTar; Daping Du; A.X. El-Khadra; J. Foley; E. D. Freeland; E. Gamiz; Steven Gottlieb; Urs M. Heller; Jongjeong Kim; A. S. Kronfeld; J. Laiho; L. Levkova; P.B. Mackenzie; Y. Meurice; E. T. Neil; M.B. Oktay; Si-Wei Qiu; J.N. Simone; R. Sugar; D. Toussaint; R. S. Van De Water; Ran Zhou
The semileptonic decay channel B→Dτν is sensitive to the presence of a scalar current, such as that mediated by a charged-Higgs boson. Recently, the BABAR experiment reported the first observation of the exclusive semileptonic decay B→Dτ(-)ν, finding an approximately 2σ disagreement with the standard-model prediction for the ratio R(D)=BR(B→Dτν)/BR(B→Dℓν), where ℓ = e,μ. We compute this ratio of branching fractions using hadronic form factors computed in unquenched lattice QCD and obtain R(D)=0.316(12)(7), where the errors are statistical and total systematic, respectively. This result is the first standard-model calculation of R(D) from ab initio full QCD. Its error is smaller than that of previous estimates, primarily due to the reduced uncertainty in the scalar form factor f(0)(q(2)). Our determination of R(D) is approximately 1σ higher than previous estimates and, thus, reduces the tension with experiment. We also compute R(D) in models with electrically charged scalar exchange, such as the type-II two-Higgs-doublet model. Once again, our result is consistent with, but approximately 1σ higher than, previous estimates for phenomenologically relevant values of the scalar coupling in the type-II model. As a by-product of our calculation, we also present the standard-model prediction for the longitudinal-polarization ratio P(L)(D)=0.325(4)(3).
Physical Review D | 2014
Jon A. Bailey; R. S. Van De Water; A. S. Kronfeld; P.B. Mackenzie; J.N. Simone; Si-Wei Qiu; E. T. Neil; J. Laiho; D. Toussaint; L. Levkova; Daping Du; A.X. El-Khadra; E. D. Freeland; A. Bazavov; Urs M. Heller; Steven Gottlieb; Ran Zhou; C. Bernard; Carleton DeTar; J. Foley; R. Sugar; E. Gamiz; C. M. Bouchard
We compute the zero-recoil form factor for the semileptonic decay
arXiv: High Energy Physics - Lattice | 2015
S. Basak; A. Bazavov; C. Bernard; Carleton DeTar; E. D. Freeland; J. Foley; Steven Gottlieb; U. M. Heller; J. Komijani; J. Laiho; L. Levkova; James C. Osborn; R. L. Sugar; A. Torok; D. Toussaint; R. S. Van De Water; Ran Zhou
\bar{B}^0\to D^{*+}\ell^-\bar{\nu}
arXiv: High Energy Physics - Lattice | 2005
Andreas S. Kronfeld; Ian F. Allison; Christopher Alan Aubin; C. Bernard; C. T. H. Davies; Carleton E. DeTar; M. Di Pierro; E. D. Freeland; Steven Gottlieb; Alan Gray; E. Gregor; J.E. Hetrick; A. X. El-Khadra; L. Levkova; P.B. Mackenzie; F. Maresca; D. Menscher; M. Nobes; M. Okamoto; M.B. Oktay; U Glasgow; U Columbia; U Utah; U DePaul; U Indiana; U Arizona; New York Aps; Stockton U. Pacific; Urbana Illinois U.; Santa Barbara Uc
(and modes related by isospin and charge conjugation) using lattice QCD with three flavors of sea quarks. We use an improved staggered action for the light valence and sea quarks (the MILC \asqtad\ configurations), and the Fermilab action for the heavy quarks. Our calculations incorporate higher statistics, finer lattice spacings, and lighter quark masses than our 2008 work. As a byproduct of tuning the new data set, we obtain the
arXiv: High Energy Physics - Lattice | 2015
C. M. Bouchard; E. D. Freeland; C. Bernard; Chia Cheng Chang; A. X. El-Khadra; M. Elvira Gámiz; A. S. Kronfeld; J. Laiho; Ruth S. Van de Water
D_s
Physical Review D | 2014
Jon A. Bailey; A. Bazavov; C. Bernard; C. M. Bouchard; Carleton E. DeTar; Daping Du; A.X. El-Khadra; J. Foley; E. D. Freeland; E. Gamiz; Steven Gottlieb; Urs M. Heller; A. S. Kronfeld; J. Laiho; L. Levkova; P.B. Mackenzie; E. T. Neil; Si-Wei Qiu; J.N. Simone; R. Sugar; D. Toussaint; R. S. Van De Water; Ran Zhou
and
Proceedings of The XXVIII International Symposium on Lattice Field Theory — PoS(Lattice 2010) | 2011
E. D. Freeland; C. Bernard
B_s
International Journal of Modern Physics A | 2006
Andreas S. Kronfeld; Ian F. Allison; C. Aubin; C. Bernard; C. T. H. Davies; Carleton DeTar; M. Di Pierro; E. D. Freeland; Steven Gottlieb; Alan Gray; Eric Brittain Gregory; U. M. Heller; James Edward Hetrick; A. X. El-Khadra; L. Levkova; Paul B. Mackenzie; F. Maresca; D. Menscher; M. Nobes; M. Okamoto; M.B. Oktay; J. Osborn; Dru B. Renner; James N. Simone; R. L. Sugar; D. Toussaint; Howard D. Trottier
hyperfine splittings with few-MeV accuracy. For the zero-recoil form factor, we obtain