E De Franco
University of Exeter
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E De Franco.
Diabetologia | 2013
Sian Ellard; H. Lango Allen; E De Franco; Sarah E. Flanagan; Gerald Hysenaj; Kevin Colclough; Jayne Houghton; Maggie Shepherd; Andrew T. Hattersley; Michael N. Weedon; Richard Caswell
Aims/hypothesisCurrent genetic tests for diagnosing monogenic diabetes rely on selection of the appropriate gene for analysis according to the patient’s phenotype. Next-generation sequencing enables the simultaneous analysis of multiple genes in a single test. Our aim was to develop a targeted next-generation sequencing assay to detect mutations in all known MODY and neonatal diabetes genes.MethodsWe selected 29 genes in which mutations have been reported to cause neonatal diabetes, MODY, maternally inherited diabetes and deafness (MIDD) or familial partial lipodystrophy (FPLD). An exon-capture assay was designed to include coding regions and splice sites. A total of 114 patient samples were tested—32 with known mutations and 82 previously tested for MODY (n = 33) or neonatal diabetes (n = 49) but in whom a mutation had not been found. Sequence data were analysed for the presence of base substitutions, small insertions or deletions (indels) and exonic deletions or duplications.ResultsIn the 32 positive controls we detected all previously identified variants (34 mutations and 36 polymorphisms), including 55 base substitutions, ten small insertions or deletions and five partial/whole gene deletions/duplications. Previously unidentified mutations were found in five patients with MODY (15%) and nine with neonatal diabetes (18%). Most of these patients (12/14) had mutations in genes that had not previously been tested.Conclusions/interpretationOur novel targeted next-generation sequencing assay provides a highly sensitive method for simultaneous analysis of all monogenic diabetes genes. This single test can detect mutations previously identified by Sanger sequencing or multiplex ligation-dependent probe amplification dosage analysis. The increased number of genes tested led to a higher mutation detection rate.
Diabetes | 2016
Kashyap Patel; Richard A. Oram; Sarah E. Flanagan; E De Franco; Kevin Colclough; Maggie Shepherd; Sian Ellard; Michael N. Weedon; Andrew T. Hattersley
Distinguishing patients with monogenic diabetes from those with type 1 diabetes (T1D) is important for correct diagnosis, treatment, and selection of patients for gene discovery studies. We assessed whether a T1D genetic risk score (T1D-GRS) generated from T1D-associated common genetic variants provides a novel way to discriminate monogenic diabetes from T1D. The T1D-GRS was highly discriminative of proven maturity-onset diabetes of young (MODY) (n = 805) and T1D (n = 1,963) (receiver operating characteristic area under the curve 0.87). A T1D-GRS of >0.280 (>50th T1D centile) was indicative of T1D (94% specificity, 50% sensitivity). We then analyzed the T1D-GRS of 242 white European patients with neonatal diabetes (NDM) who had been tested for all known NDM genes. Monogenic NDM was confirmed in 90, 59, and 8% of patients with GRS <5th T1D centile, 50–75th T1D centile, and >75th T1D centile, respectively. Applying a GRS 50th T1D centile cutoff in 48 NDM patients with no known genetic cause identified those most likely to have a novel monogenic etiology by highlighting patients with probable early-onset T1D (GRS >50th T1D centile) who were diagnosed later and had less syndromic presentation but additional autoimmune features compared with those with proven monogenic NDM. The T1D-GRS is a novel tool to improve the use of biomarkers in the discrimination of monogenic diabetes from T1D.
The Journal of Clinical Endocrinology and Metabolism | 2015
Paul Dimitri; Abdelhadi M. Habeb; F. Garbuz; Ann Millward; S. Wallis; K. Moussa; Teoman Akcay; Doris Taha; Jacob Hogue; Anne Slavotinek; Jeremy K.H. Wales; A. Shetty; D. Hawkes; Andrew T. Hattersley; Sian Ellard; E De Franco
Context: GLIS3 (GLI-similar 3) is a member of the GLI-similar zinc finger protein family encoding for a nuclear protein with 5 C2H2-type zinc finger domains. The protein is expressed early in embryogenesis and plays a critical role as both a repressor and activator of transcription. Human GLIS3 mutations are extremely rare. Objective: The purpose of this article was determine the phenotypic presentation of 12 patients with a variety of GLIS3 mutations. Methods: GLIS3 gene mutations were sought by PCR amplification and sequence analysis of exons 1 to 11. Clinical information was provided by the referring clinicians and subsequently using a questionnaire circulated to gain further information. Results: We report the first case of a patient with a compound heterozygous mutation in GLIS3 who did not present with congenital hypothyroidism. All patients presented with neonatal diabetes with a range of insulin sensitivities. Thyroid disease varied among patients. Hepatic and renal disease was common with liver dysfunction ranging from hepatitis to cirrhosis; cystic dysplasia was the most common renal manifestation. We describe new presenting features in patients with GLIS3 mutations, including craniosynostosis, hiatus hernia, atrial septal defect, splenic cyst, and choanal atresia and confirm further cases with sensorineural deafness and exocrine pancreatic insufficiency. Conclusion: We report new findings within the GLIS3 phenotype, further extending the spectrum of abnormalities associated with GLIS3 mutations and providing novel insights into the role of GLIS3 in human physiological development. All but 2 of the patients within our cohort are still alive, and we describe the first patient to live to adulthood with a GLIS3 mutation, suggesting that even patients with a severe GLIS3 phenotype may have a longer life expectancy than originally described.
Diabetic Medicine | 2013
E De Franco; Charles Shaw-Smith; Sarah E. Flanagan; Emma L. Edghill; J. Wolf; V. Otte; F. Ebinger; P. Varthakavi; Thiruvengadam Vasanthi; S. Edvardsson; Andrew T. Hattersley; Sian Ellard
Recessive PDX1 (IPF1) mutations are a rare cause of pancreatic agenesis, with three cases reported worldwide. A recent report described two cousins with a homozygous hypomorphic PDX1 mutation causing permanent neonatal diabetes with subclinical exocrine insufficiency. The aim of our study was to investigate the possibility of hypomorphic PDX1 mutations in a large cohort of patients with permanent neonatal diabetes and no reported pancreatic hypoplasia or exocrine insufficiency.
Diabetes & Metabolism | 2013
Gönül Çatlı; Ayhan Abaci; Sarah E. Flanagan; E De Franco; Sian Ellard; Andrew T. Hattersley; H Guleryuz; Ece Böber
Permanent neonatal diabetes mellitus is a rare condition mostly due to heterozygous mutations in the KCNJ11, ABCC8 and INS genes. Neonatal diabetes due to pancreatic agenesis is extremely rare. Mutations in PDX1, PTF1A, HNF1B, EIF2AK3, RFX6 and GATA6 genes have been shown to result in pancreatic agenesis or hypoplasia. This report describes a 40-day-old male infant diagnosed with permanent neonatal diabetes associated with atrial septal defect, pulmonary stenosis, patent ductus arteriosus and a novel de novo heterozygous missense mutation (p.N466S) in the GATA6 gene with no evidence of exocrine pancreas insufficiency. In addition to permanent neonatal diabetes, the patient had transient idiopathic neonatal cholestasis and hypoglycaemic episodes unrelated to insulin treatment, features that are rarely described in children with permanent neonatal diabetes.
Diabetic Medicine | 2017
E De Franco; Richard Caswell; Jayne Houghton; Iotova; Andrew T. Hattersley; Sian Ellard
An early genetic diagnosis of neonatal diabetes guides clinical management and results in improved treatment in ~ 40% of patients. In the offspring of individuals with neonatal diabetes, a prenatal diagnosis allows accurate estimation of the risk of developing diabetes and, eventually, the most appropriate treatment for the baby. In this study, we performed non‐invasive prenatal genetic testing for a fetus at risk of inheriting a paternal KCNJ11 p.R201C mutation causing permanent neonatal diabetes.
Journal of Clinical Research in Pediatric Endocrinology | 2017
E. Gole; S. Oikonomou; Sian Ellard; E De Franco; K. Karavanaki
Neonatal diabetes mellitus (NDM) is a rare type of monogenic diabetes that presents in the first 6 months of life. Activating mutations in the KCNJ11 gene encoding for the Kir6.2 subunit of the ATP-sensitive potassium (KATP ) channel can lead to transient NDM (TNDM) or to permanent NDM (PNDM). A female infant presented on the 22nd day of life with severe hyperglycemia and ketoacidosis (glucose: 907mg/dL, blood gas pH: 6.84, HCO3: 6 mmol/L). She was initially managed with intravenous (IV) fluids and IV insulin. Ketoacidosis resolved within 48 hours and she was started on subcutaneous insulin injections with intermediate acting insulin NPH twice daily requiring initially 0.75-1.35 IU/kg/d. Pre-prandial C-peptide levels were 0.51 ng/mL (normal: 1.77-4.68). Insulin requirements were gradually reduced and insulin administration was discontinued at the age of 10 months with subsequent normal glucose and HbA1c levels. C-peptide levels normalized (pre-prandial: 1.6 ng/mL, postprandial: 2 ng/mL). Genetic analysis identified a novel missense mutation (p.Pro254Gln) in the KCNJ11 gene. We report a novel KCNJ11 mutation in a patient who presented in the first month of life with a phenotype of NDM that subsided at the age of 10 months. It is likely that the novel p.P254Q mutation results in mild impairment of the KATP channel function leading to TNDM.
Pediatric Diabetes | 2018
H Demirbilek; Nihal Hatipoglu; Ulku Gul; Z Uzan Tatli; Sian Ellard; Sarah E. Flanagan; E De Franco; Selim Kurtoglu
The basic helix‐loop‐helix (bHLH) transcription factor, neuronal differentiation 1 (NEUROD1) (also known as BETA2) is involved in the development of neural elements and endocrine pancreas. Less than 10 reports of adult‐onset non‐insulin‐dependent diabetes mellitus (NIDDM) due to heterozygous NEUROD1 mutations and 2 cases with permanent neonatal diabetes mellitus (PNDM) and neurological abnormalities due to homozygous NEUROD1 mutations have been published. A 13 year‐old female was referred to endocrine department due to hyperglycemia. She was on insulin therapy following a diagnosis of neonatal diabetes mellitus (NDM) at the age of 9‐weeks but missed regular follow‐up. Parents are second cousin. There was a significant family history of adult onset NIDDM including patients father. Auxological measurements were within normal ranges. On laboratory examination blood glucose was 33.2 mmol/L with undetectable c‐peptide and glycosylated hemoglobin level of 8.9% (73.8 mmol/mol). She had developed difficulty in walking at the age of 4 years which had worsened over time. On further evaluation, a diagnosis of visual impairment, mental retardation, ataxic gait, retinitis pigmentosa and sensory‐neural deafness were considered. Cranial magnetic resonance imaging revealed cerebellar hypoplasia. Molecular genetic analysis using targeted next generation sequencing detected a novel homozygous missense mutation, p.Ile150Asn(c.449T>A), in NEUROD1. Both parents and 2 unaffected siblings were heterozygous for the mutation. We report the third case of PNDM with neurological abnormalities caused by homozygous NEUROD1 mutation, the first caused by a missense mutation. Heterozygous carriers of the p.Ile150Asn mutation were either unaffected or diagnosed with diabetes in adulthood. It is currently unclear whether the NEUROD1 heterozygous mutation has contributed to diabetes development in these individuals.
Diabetic Medicine | 2018
Shivani Misra; Natascia Vedovato; E. Cliff; E De Franco; Andrew T. Hattersley; Frances M. Ashcroft; Nick Oliver
Permanent neonatal diabetes caused by mutations in the KCNJ11 gene may be managed with high‐dose sulfonylureas. Complete transfer to sulfonylureas is not successful in all cases and can result in insulin monotherapy. In such cases, the outcomes of combining sulfonylureas with insulin have not been fully explored. We present the case of a woman with diabetes due to a KCNJ11 mutation, in whom combination therapy led to clinically meaningful improvements.
Journal of Clinical Research in Pediatric Endocrinology | 2017
Sarah E. Flanagan; V C Dũng; Houghton Jal.; E De Franco; Ngoc Ctb.; Annet Damhuis; Frances M. Ashcroft; Lorna W. Harries; Sian Ellard
The pancreatic ATP-sensitive K+ (K-ATP) channel is a key regulator of insulin secretion. Gain-of-function mutations in the genes encoding the Kir6.2 (KCNJ11) and SUR1 (ABCC8) subunits of the channel cause neonatal diabetes, whilst loss-of-function mutations in these genes result in congenital hyperinsulinism. We report two patients with neonatal diabetes in whom we unexpectedly identified recessively inherited loss-of-function mutations. The aim of this study was to investigate how a homozygous nonsense mutation in ABCC8 could result in neonatal diabetes. The ABCC8 p.Glu747* was identified in two unrelated Vietnamese patients. This mutation is located within the in-frame exon 17 and RNA studies confirmed (a) the absence of full length SUR1 mRNA and (b) the presence of the alternatively spliced transcript lacking exon 17. Successful transfer of both patients to sulphonylurea treatment suggests that the altered transcript expression enhances the sensitivity of the K-ATP channel to Mg-ADP/ATP. This is the first report of an ABCC8 nonsense mutation causing a gain-of-channel function and these findings extend the spectrum of K-ATP channel mutations observed in patients with neonatal diabetes.