Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Herrero is active.

Publication


Featured researches published by E. Herrero.


Publications of the Astronomical Society of the Pacific | 2016

State of the Field: Extreme Precision Radial Velocities*

Debra A. Fischer; Guillem Anglada-Escudé; Pamela Arriagada; Roman V. Baluev; Jacob L. Bean; F. Bouchy; Lars A. Buchhave; Thorsten Carroll; Abhijit Chakraborty; Justin R. Crepp; Rebekah I. Dawson; Scott A. Diddams; X. Dumusque; Jason D. Eastman; Michael Endl; P. Figueira; Eric B. Ford; Daniel Foreman-Mackey; Paul Fournier; Gábor Fűrész; B. Scott Gaudi; Philip C. Gregory; F. Grundahl; A. Hatzes; G. Hébrard; E. Herrero; David W. Hogg; Andrew W. Howard; John Asher Johnson; Paul Jorden

The Second Workshop on Extreme Precision Radial Velocities defined circa 2015 the state of the art Doppler precision and identified the critical path challenges for reaching 10 cm s^(−1) measurement precision. The presentations and discussion of key issues for instrumentation and data analysis and the workshop recommendations for achieving this bold precision are summarized here. Beginning with the High Accuracy Radial Velocity Planet Searcher spectrograph, technological advances for precision radial velocity (RV) measurements have focused on building extremely stable instruments. To reach still higher precision, future spectrometers will need to improve upon the state of the art, producing even higher fidelity spectra. This should be possible with improved environmental control, greater stability in the illumination of the spectrometer optics, better detectors, more precise wavelength calibration, and broader bandwidth spectra. Key data analysis challenges for the precision RV community include distinguishing center of mass (COM) Keplerian motion from photospheric velocities (time correlated noise) and the proper treatment of telluric contamination. Success here is coupled to the instrument design, but also requires the implementation of robust statistical and modeling techniques. COM velocities produce Doppler shifts that affect every line identically, while photospheric velocities produce line profile asymmetries with wavelength and temporal dependencies that are different from Keplerian signals. Exoplanets are an important subfield of astronomy and there has been an impressive rate of discovery over the past two decades. However, higher precision RV measurements are required to serve as a discovery technique for potentially habitable worlds, to confirm and characterize detections from transit missions, and to provide mass measurements for other space-based missions. The future of exoplanet science has very different trajectories depending on the precision that can ultimately be achieved with Doppler measurements.


Proceedings of SPIE | 2010

CARMENES: Calar Alto high-resolution search for M dwarfs with exo-earths with a near-infrared Echelle spectrograph

A. Quirrenbach; P. J. Amado; H. Mandel; J. A. Caballero; Reinhard Mundt; Ignasi Ribas; Ansgar Reiners; Miguel Abril; J. Aceituno; Cristina Afonso; D. Barrado y Navascués; Jacob L. Bean; V. J. S. Béjar; S. Becerril; A. Böhm; Manuel Cárdenas; Antonio Claret; J. Colomé; Luis P. Costillo; S. Dreizler; Matilde Fernández; Xavier Francisco; D. Galadí; R. Garrido; J. I. González Hernández; J. Guàrdia; Eike W. Guenther; F. Gutiérrez-Soto; Viki Joergens; A. Hatzes

CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs) is a next-generation instrument to be built for the 3.5m telescope at the Calar Alto Observatory by a consortium of Spanish and German institutions. Conducting a five-year exoplanet survey targeting ~ 300 M stars with the completed instrument is an integral part of the project. The CARMENES instrument consists of two separate spectrographs covering the wavelength range from 0.52 to 1.7 μm at a spectral resolution of R = 85, 000, fed by fibers from the Cassegrain focus of the telescope. The spectrographs are housed in a temperature-stabilized environment in vacuum tanks, to enable a 1m/s radial velocity precision employing a simultaneous ThAr calibration.


Astronomy and Astrophysics | 2015

Transmission spectroscopy of the inflated exo-Saturn HAT-P-19b

M. Mallonn; C. von Essen; J. Weingrill; Klaus G. Strassmeier; Ignasi Ribas; T. A. Carroll; E. Herrero; T. Granzer; A. Claret; A. Schwope

We observed the Saturn-mass and Jupiter-sized exoplanet HAT-P-19b to refine its transit parameters and ephemeris as well as to shed first light on its transmission spectrum. We monitored the host star over one year to quantify its flux variability and to correct the transmission spectrum for a slope caused by starspots. A transit of HAT-P-19b was observed spectroscopically with OSIRIS at the Gran Telescopio Canarias in January 2012. The spectra of the target and the comparison star covered the wavelength range from 5600 to 7600 AA. One high-precision differential light curve was created by integrating the entire spectral flux. This white-light curve was used to derive absolute transit parameters. Furthermore, a set of light curves over wavelength was formed by a flux integration in 41 wavelength channels of 50 AA width. We analyzed these spectral light curves for chromatic variations of transit depth. The transit fit of the combined white-light curve yields a refined value of the planet-to-star radius ratio of 0.1390 pm 0.0012 and an inclination of 88.89 pm 0.32 degrees. After a re-analysis of published data, we refine the orbital period to 4.0087844 pm 0.0000015 days. We obtain a flat transmission spectrum without significant additional absorption at any wavelength or any slope. However, our accuracy is not sufficient to significantly rule out the presence of a pressure-broadened sodium feature. Our photometric monitoring campaign allowed for an estimate of the stellar rotation period of 35.5 pm 2.5 days and an improved age estimate of 5.5^+1.8_-1.3 Gyr by gyrochronology.


Astronomy and Astrophysics | 2016

Modelling the photosphere of active stars for planet detection and characterization

E. Herrero; Ignasi Ribas; C. Jordi; Juan Carlos Morales; Albert Rosich

Stellar activity patterns are responsible for jitter effects that are observed at different timescales and amplitudes. These effects are currently in the focus of many exoplanet search projects, since the lack of a well-defined characterization and correction strategy hampers the detection of the signals associated with small exoplanets. Accurate simulations of the stellar photosphere can provide synthetic time series data. These may help to investigate the relation between activity jitter and stellar parameters when considering different active region patterns. Moreover, jitters can be analysed at different wavelength scales in order to design strategies to remove or minimize them. In this work we present the StarSim tool, which is based on a model for a spotted rotating photosphere built from the integration of the spectral contribution of a fine grid of surface elements. The model includes all significant effects affecting the flux intensities and the wavelength of spectral features produced by active regions and planets. A specific application for the characterization and modelling of the spectral signature of active regions is considered, showing that the chromatic effects of faculae are dominant for low temperature contrasts of spots. Synthetic time series are modelled for HD 189733. Our algorithm reproduces both the photometry and the RVs to good precision, generally better than the studies published to date. We evaluate the RV signature of the activity in HD 189733 by exploring a grid of solutions from the photometry. We find that the use of RV data in the inverse problem could break degeneracies and allow for a better determination of some stellar and activity parameters. In addition, the effects of spots are studied for a set of simulated transit photometry, showing that these can introduce variations which are very similar to the signal of an atmosphere dominated by dust.


Astronomy and Astrophysics | 2016

HADES RV program with HARPS-N at the TNG GJ 3998: An early M-dwarf hosting a system of super-Earths

L. Affer; G. Micela; M. Damasso; Ignasi Ribas; A. Suárez Mascareño; J. I. González Hernández; R. Rebolo; E. Poretti; J. Maldonado; G. Leto; I. Pagano; G. Scandariato; R. Zanmar Sanchez; A. Sozzetti; A. S. Bonomo; Luca Malavolta; J. C. Morales; A. Rosich; A. Bignamini; R. Gratton; S. Velasco; D. Cenadelli; R. U. Claudi; Rosario Cosentino; S. Desidera; P. Giacobbe; E. Herrero; M. Lafarga; A. Lanza; Emilio Molinari

Context. Many efforts are currently made to detect Earth-like planets around low-mass stars in almost every extra-solar planet search. M dwarfs are considered ideal targets for Doppler radial velocity searches because their low masses and luminosities make low-mass planets orbiting in these stars’ habitable zones more easily detectable than those around higher mass stars. Nonetheless, the frequency statistics of low-mass planets hosted by low-mass stars remains poorly constrained. Aims. Our M-dwarf radial velocity monitoring with HARPS-N within the collaboration between the Global architectures of Planetary Systems (GAPS) project, the Institut de Ciencies de l’Espai/CSIC-IEEC (ICE) and the Instituto de Astrofisica de Canarias (IAC) can provide a major contribution to the widening of the current statistics through the in-depth analysis of accurate radial velocity observations in a narrow range of spectral sub-types (79 stars, between dM0 to dM3). Spectral accuracy will enable us to reach the precision needed to detect small planets with a few Earth masses. Our survey will contribute to the surveys devoted to the search for planets around M-dwarfs, mainly focused on the M-dwarf population of the northern emisphere, for which we will provide an estimate of the planet occurrence. Methods. We present here a long-duration radial velocity monitoring of the M1 dwarf star GJu20093998 with HARPS-N to identify periodic signals in the data. Almost simultaneous photometric observations were carried out within the APACHE and EXORAP programs to characterize the stellar activity and to distinguish those due to activity and to the presence of planetary companions from the periodic signals. We ran a Markov chain Monte Carlo simulation and used a Bayesian model selection to determine the number of planets in this system, to estimate their orbital parameters and minimum mass, and to properly treat the activity noise. Results. The radial velocities have a dispersion in excess of their internal errors due to at least four superimposed signals with periods of 30.7, 13.7, 42.5, and 2.65 days. Our data are well described by a two-planet Keplerian (13.7 d and 2.65 d) and a fit with two sinusoidal functions (stellar activity, 30.7 d and 42.5 d). The analysis of spectral indexes based on Ca II H & K and H α lines demonstrates that the periods of 30.7 and 42.5 days are due to chromospheric inhomogeneities modulated by stellar rotation and differential rotation. This result is supported by photometry and is consistent with the results on differential rotation of M stars obtained with Kepler . The shorter periods of 13.74 ± 0.02 d and 2.6498 ± 0.0008 d are well explained with the presence of two planets, with masses of at least 6.26 -0.76 +0.79 M ⊕ and 2.47 ± 0.27 M ⊕ and distances of 0.089 AU and 0.029 AU from the host, respectively.


Monthly Notices of the Royal Astronomical Society | 2015

WASP-80b has a dayside within the T-dwarf range

A. H. M. J. Triaud; Michaël Gillon; D. Ehrenreich; E. Herrero; Monika Lendl; D. R. Anderson; Andrew Collier Cameron; Laetitia Delrez; Brice-Olivier Demory; C. Hellier; Keving Heng; Emmanuel Jehin; P. F. L. Maxted; Don Pollacco; D. Queloz; Ignasi Ribas; B. Smalley; A. M. S. Smith; S. Udry

AHMJT is a Swiss National Science Foundation (SNSF) fellow under grant number P300P2-147773. MG and EJ are Research Associates at the F.R.S-FNRS; LD received the support the support of the F.R.I.A. fund of the FNRS. DE, KH, and SU acknowledge the financial support of the SNSF in the frame of the National Centre for Competence in Research ‘PlanetS’. EH and IR acknowledge support from the Spanish Ministry of Economy and Competitiveness (MINECO) and the ‘Fondo Europeo de Desarrollo Regional’ (FEDER) through grants AYA2012-39612-C03-01 and ESP2013-48391-C4-1-R.


Astronomy and Astrophysics | 2015

Broad-band spectrophotometry of the hot Jupiter HAT-P-12b from the near-UV to the near-IR

M. Mallonn; Valerio Nascimbeni; J. Weingrill; C. von Essen; Klaus G. Strassmeier; G. Piotto; I. Pagano; G. Scandariato; Sz. Csizmadia; E. Herrero; Pedro V. Sada; V. S. Dhillon; T. R. Marsh; A. Künstler; I. Bernt; T. Granzer

The detection of trends or gradients in the transmission spectrum of extrasolar planets is possible with observations at very low spectral resolution. Transit measurements of sufficient accuracy using selected broad-band filters allow for an initial characterization of the atmosphere of the planet. We obtained time series photometry of 20 transit events and analyzed them homogeneously, along with eight light curves obtained from the literature. In total, the light curves span a range from 0.35 to 1.25 microns. During two observing seasons over four months each, we monitored the host star to constrain the potential influence of starspots on the derived transit parameters. We rule out the presence of a Rayleigh slope extending over the entire optical wavelength range, a flat spectrum is favored for HAT-P-12b with respect to a cloud-free atmosphere model spectrum. A potential cause of such gray absorption is the presence of a cloud layer at the probed latitudes. Furthermore, in this work we refine the transit parameters, the ephemeris and perform a TTV analysis in which we found no indication for an unseen companion. The host star showed a mild non-periodic variability of up to 1%. However, no stellar rotation period could be detected to high confidence.


Astronomy and Astrophysics | 2014

Pulsation analysis and its impact on primary transit modeling in WASP-33

C. von Essen; S. Czesla; U. Wolter; Michel Breger; E. Herrero; M. Mallonn; Ignasi Ribas; K.G. Strassmeier; J. C. Morales

Aims. To date, WASP-33 is the only δ Scuti star known to be orbited by a hot Jupiter. The pronounced stellar pulsations, showing periods comparable to the primary transit duration, interfere with the transit modeling. Therefore our main goal is to study the pulsation spectrum of the host star to redetermine the orbital parameters of the system by means of pulsation-cleaned primary transit light curves. Methods. Between August 2010 and October 2012 we obtained 457 h of photometry of WASP-33 using small and middle-class telescopes located mostly in Spain and in Germany. Our observations comprise the wavelength range between the blue and the red, and provide full phase coverage of the planetary orbit. After a careful detrend, we focus our pulsation studies in the high frequency regime, where the pulsations that mostly deform the primary transit exist. Results. The data allow us to identify, for the first time in the system, eight significant pulsation frequencies. The pulsations are likely associated with low-order p-modes. Furthermore, we find that pulsation phases evolve in time. We use our knowledge of the pulsations to clean the primary transit light curves and carry out an improved transit modeling. Surprisingly, taking into account the pulsations in the modeling has little influence on the derived orbital parameters. However, the uncertainties in the best-fit parameters decrease. Additionally, we find indications for a possible dependence between wavelength and transit depth, but only with marginal significance. A clear pulsation solution, in combination with an accurate orbital period, allows us to extend our studies and search for star-planet interactions (SPI). Although we find no conclusive evidence of SPI, we believe that the pulsation nature of the host star and the proximity between members make WASP-33 a promising system for further SPI studies.


Astronomy and Astrophysics | 2017

HADES RV Programme with HARPS-N at TNG - II. Data treatment and simulations

Alvaro Garcia-Piquer; Ignasi Ribas; J. C. Morales; L. Affer; G. Micela; M. Damasso; A. Suárez-Mascareño; J. I. González-Hernández; R. Rebolo; E. Herrero; A. Rosich; M. Lafarga; A. Bignamini; A. Sozzetti; R. U. Claudi; Rosario Cosentino; Emilio Molinari; J. Maldonado; A. Maggio; A. Lanza; E. Poretti; I. Pagano; S. Desidera; R. Gratton; G. Piotto; A. S. Bonomo; A. F. Martinez Fiorenzano; P. Giacobbe; Luca Malavolta; Valerio Nascimbeni

The distribution of exoplanets around low-mass stars is still not well understood. Such stars, however, present an excellent opportunity of reaching down to the rocky and habitable planet domains. The number of current detections used for statistical purposes is still quite modest and different surveys, using both photometry and precise radial velocities, are searching for planets around M dwarfs. Our HARPS-N red dwarf exoplanet survey is aimed at the detection of new planets around a sample of 78 selected stars, together with the subsequent characterization of their activity properties. Here we investigate the survey performance and strategy. From 2700 observed spectra, we compare the radial velocity determinations of the HARPS-N DRS pipeline and the HARPS-TERRA code, we calculate the mean activity jitter level, we evaluate the planet detection expectations, and we address the general question of how to define the strategy of spectroscopic surveys in order to be most efficient in the detection of planets. We find that the HARPS-TERRA radial velocities show less scatter and we calculate a mean activity jitter of 2.3 m/s for our sample. For a general radial velocity survey with limited observing time, the number of observations per star is key for the detection efficiency. In the case of an early M-type target sample, we conclude that approximately 50 observations per star with exposure times of 900 s and precisions of about 1 m/s maximizes the number of planet detections.


Monthly Notices of the Royal Astronomical Society | 2016

Broad-band spectrophotometry of HAT-P-32 b: Search for a scattering signature in the planetary spectrum

M. Mallonn; I. Bernt; E. Herrero; S. Hoyer; J. Kirk; P. J. Wheatley; M. Seeliger; F. Mackebrandt; C. von Essen; Klaus G. Strassmeier; T. Granzer; A. Künstler; V. S. Dhillon; T. R. Marsh; J. Gaitan

Multicolour broad-band transit observations offer the opportunity to characterize the atmosphere of an extrasolar planet with small- to medium-sized telescopes. One of the most favourable targets is the hot Jupiter HAT-P-32 b. We combined 21 new transit observations of this planet with 36 previously published light curves for a homogeneous analysis of the broad-band transmission spectrum from the Sloan u′ band to the Sloan z′ band. Our results rule out cloud-free planetary atmosphere models of solar metallicity. Furthermore, a discrepancy at reddest wavelengths to previously published results makes a recent tentative detection of a scattering feature less likely. Instead, the available spectral measurements of HAT-P-32 b favour a completely flat spectrum from the near-UV to the near-IR. A plausible interpretation is a thick cloud cover at high altitudes.

Collaboration


Dive into the E. Herrero's collaboration.

Top Co-Authors

Avatar

Ignasi Ribas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J. C. Morales

Institut de Ciències de l'Espai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. I. González Hernández

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

A. Rosich

Institut de Ciències de l'Espai

View shared research outputs
Top Co-Authors

Avatar

C. Jordi

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

J. A. Caballero

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Lafarga

Institut de Ciències de l'Espai

View shared research outputs
Researchain Logo
Decentralizing Knowledge