J. I. González Hernández
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by J. I. González Hernández.
Astronomy and Astrophysics | 2012
V. Zh. Adibekyan; S. G. Sousa; N. C. Santos; E. Delgado Mena; J. I. González Hernández; G. Israelian; Michel Mayor; G. Khachatryan
Context. We performed a uniform and detailed abundance analysis of 12 refractory elements (Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Co, Sc, Mn, and V) for a sample of 1111 FGK dwarf stars from the HARPS GTO planet search program. Of these stars, 109 are known to harbor giant planetary companions and 26 stars are exclusively hosting Neptunians and super-Earths. Aims. The two main goals of this paper are to investigate whether there are any differences between the elemental abundance trends for stars of different stellar populations and to characterize the planet host and non-host samples in terms of their [X/H]. The extensive study of this sample, focused on the abundance differences between stars with and without planets will be presented in a parallel paper. Methods. The equivalent widths of spectral lines were automatically measured from HARPS spectra with the ARES code. The abundances of the chemical elements were determined using an LTE abundance analysis relative to the Sun, with the 2010 revised version of the spectral synthesis code MOOG and a grid of Kurucz ATLAS9 atmospheres. To separate the Galactic stellar populations we applied both a purely kinematical approach and a chemical method. Results. We found that the chemically separated (based on the Mg, Si, and Ti abundances) thin- and thick disks are also chemically disjunct for Al, Sc, Co, and Ca. Some bifurcation might also exist for Na, V, Ni, and Mn, but there is no clear boundary of their [X/Fe] ratios. We confirm that an overabundance in giant-planet host stars is clear for all studied elements.We also confirm that stars hosting only Neptunian-like planets may be easier to detect around stars with similar metallicities than around non-planet hosts, although for some elements (particulary α-elements) the lower limit of [X/H] is very abrupt.
Astronomy and Astrophysics | 2010
L. Sbordone; P. Bonifacio; E. Caffau; H.-G. Ludwig; Natalie Thérèse Behara; J. I. González Hernández; M. Steffen; R. Cayrel; B. Freytag; C. van't Veer; Paolo Molaro; Bertrand Plez; Thirupathi Sivarani; Monique Spite; Francois Spite; Timothy C. Beers; Norbert Christlieb; P. Francois; V. Hill
Context. The primordial nature of the Spite plateau is at odds with the WMAP satellite measurements, implying a primordial Li production at least three times higher than observed. It has also been suggested that A(Li) might exhibit a positive correlation with metallicity below [Fe/H] ~ -2.5. Previous samples studied comprised few stars below [Fe/H] = -3. Aims. We present VLT-UVES Li abundances of 28 halo dwarf stars between [Fe/H] = -2.5 and -3.5, ten of which have [Fe/H] < -3. Methods. We determined stellar parameters and abundances using four different T eff scales. The direct infrared flux method was applied to infrared photometry. Hα wings were fitted with two synthetic grids computed by means of 1D LTE atmosphere models, assuming two different self-broadening theories. A grid of Hα profiles was finally computed by means of 3D hydrodynamical atmosphere models. The Li I doublet at 670.8 nm has been used to measure A(Li) by means of 3D hydrodynamical NLTE spectral syntheses. An analytical fit of A(Li) 3D,NLTE as a function of equivalent width, T eff , log g, and [Fe/H] has been derived and is made available. Results. We confirm previous claims that A(Li) does not exhibit a plateau below [Fe/H] = -3. We detect a strong positive correlation with [Fe/H] that is insensitive to the choice of T eff estimator. From a linear fit, we infer a steep slope of about 0.30 dex in A(Li) per dex in [Fe/H], which has a significance of 2-3σ. The slopes derived using the four T eff estimators are consistent to within 1σ. A significant slope is also detected in the A(Li)-T eff plane, driven mainly by the coolest stars in the sample (T eff < 6250), which appear to be Li-poor. However, when we remove these stars the slope detected in the A(Li)-[Fe/H] plane is not altered significantly. When the full sample is considered, the scatter in A(Li) increases by a factor of 2 towards lower metallicities, while the plateau appears very thin above [Fe/H] = -2.8. At this metallicity, the plateau lies at 〈A(Li) 3D,NLTE 〉 = 2.199 ± 0.086. Conclusions. The meltdown of the Spite plateau below [Fe/H] ~ -3 is established, but its cause is unclear. If the primordial A(Li) were that derived from standard BBN, it appears difficult to envision a single depletion phenomenon producing a thin, metallicity independent plateau above [Fe/H] = -2.8, and a highly scattered, metallicity dependent distribution below. That no star below [Fe/H] = -3 lies above the plateau suggests that they formed at plateau level and experienced subsequent depletion.
Astronomy and Astrophysics | 2009
J. I. González Hernández; P. Bonifacio
Context. The effective temperature scale of FGK stars, especially at the lowest metallicities remains a major problem in the chemical abundance analysis of metal-poor stars. Aims. We present a new implementation of the infrared flux method (I RFM) using the 2MASS catalogue. Methods. We computed the theoretical quantities in the 2MASS JHKs filters by integrating theoretical fluxes computed from ATLA S models, and compare them directly with the observed 2MASS JHKs magnitudes. This is the main difference between our imple- mentation of the IRFM and that of Ram´ irez & Melendez (2005, ApJ, 626, 446; hereafter RM05), since to introduce new stars at the lowest metallicities they transform the 2MASS JHKs magnitudes into the TCS photometric system. We merge in our sample the stars from Alonso et al. (1996, AA hereafter AAM96; 1999, AA hereafter AAM99), and other studies to appropriately cover a wide range of metallicities, endin g up with 555 dwarf and subgiant field stars and 264 giant field s tars. We derived a new bolometric flux calibration using the availabl e Johnson-Cousins U BV(RI)C and the 2MASS JHKs photometry. We also computed new Teff versus colour empirical calibrations using our extended sample of stars. Results. We derived effectives temperatures for almost all the stars in the AAM96 and AAM99 samples and find that our scales of temperature are hotter by ∼ 64 K (σT = 104 K, N = 332 dwarfs) and∼ 54 K with aσT = 131 K (N = 202 giants). The same comparison with the sample of RM05 for stars with (Fe/H)<−2.5 provides a difference of∼ −87 K (σT = 194 K, N = 12 dwarf stars) and∼ 61 K (σT = 62 K, N = 18 giant stars). Conclusions. Our temperature scale is slightly hotter than that of AAM96 and RM05 for metal-rich dwarf stars but cooler than that of RM05 for metal-poor dwarfs. We have performed an fully self-consistent IRFM in the 2MASS photometric system. For those who wish to use 2MASS photometry and colour-temperature calibrations to derive effective temperatures, especially for metal-poor stars, we recommend our calibrations over others available in the literature. In our implementation we avoid the transf ormation of the 2MASS JHKs magnitudes to a different photometric system and thus fully exploit the excellent internal consistency of the 2MASS photometric system.
Astronomy and Astrophysics | 2010
Else Starkenburg; V. Hill; Eline Tolstoy; J. I. González Hernández; M. J. Irwin; Amina Helmi; G. Battaglia; Pascale Jablonka; M. Tafelmeyer; Matthew Shetrone; Kim A. Venn; T. J. L. de Boer
The NIR Ca II triplet absorption lines have proven to be an important tool for quantitative spectroscopy of individual red giant branch stars in the Local Group, providing a better understanding of metallicities of stars in the Milky Way and dwarf galaxies and thereby an opportunity to constrain their chemical evolution processes. An interesting puzzle in this field is the significant lack of extremely metal-poor stars, below [Fe/H] = -3, found in classical dwarf galaxies around the Milky Way using this technique. The question arises whether these stars are really absent, or if the empirical Ca II triplet method used to study these systems is biased in the low-metallicity regime. Here we present results of synthetic spectral analysis of the Ca II triplet, that is focused on a better understanding of spectroscopic measurements of low-metallicity giant stars. Our results start to deviate strongly from the widely-used and linear empirical calibrations at [Fe/H] = [Fe/H] >= -4. We subsequently apply this new calibration to current data sets and suggest that the classical dwarf galaxies are not so devoid of extremely low-metallicity stars as was previously thought.
Astronomy and Astrophysics | 2014
P. Jofre; Ulrike Heiter; Caroline Soubiran; S. Blanco-Cuaresma; C. C. Worley; E. Pancino; T. Cantat-Gaudin; L. Magrini; Maria Bergemann; J. I. González Hernández; V. Hill; C. Lardo; P. de Laverny; Karin Lind; T. Masseron; D. Montes; A. Mucciarelli; Thomas Nordlander; A. Recto Blanco; J. Sobeck; R. Sordo; S. G. Sousa; H. M. Tabernero; A. Vallenari; S. Van Eck
Context. To calibrate automatic pipelines that determine atmospheric parameters of stars, one needs a sample of stars, or “benchmark stars”, with well-defined parameters to be used as a reference. Aims. We provide detailed documentation of the iron abundance determination of the 34 FGK-type benchmark stars that are selected to be the pillars for calibration of the one billion Gaia stars. They cover a wide range of temperatures, surface gravities, and metallicities. Methods. Up to seven different methods were used to analyze an observed spectral library of high resolutions and high signal-to-noise ratios. The metallicity was determined by assuming a value of effective temperature and surface gravity obtained from fundamental relations; that is, these parameters were known a priori and independently from the spectra. Results. We present a set of metallicity values obtained in a homogeneous way for our sample of benchmark stars. In addition to this value, we provide detailed documentation of the associated uncertainties. Finally, we report a value of the metallicity of the cool giant ψ Phe for the first time.
The Astrophysical Journal | 2010
E. Delgado Mena; G. Israelian; J. I. González Hernández; Jade Chantelle Bond; N. C. Santos; S. Udry; Michel Mayor
Theoretical studies suggest that C/O and Mg/Si are the most important elemental ratios in determining the mineralogy of terrestrial planets. The C/O ratio controls the distribution of Si among carbide and oxide species, while Mg/Si gives information about the silicate mineralogy. We present a detailed and uniform study of C, O, Mg, and Si abundances for 61 stars with detected planets and 270 stars without detected planets from the homogeneous high-quality unbiased HARPS GTO sample, together with 39 more planet-host stars from other surveys. We determine these important mineralogical ratios and investigate the nature of the possible terrestrial planets that could have formed in those planetary systems. We find mineralogical ratios quite different from those of the Sun, showing that there is a wide variety of planetary systems which are not similar to our solar system. Many planetary host stars present an Mg/Si value lower than 1, so their planets will have a high Si content to form species such as MgSiO3. This type of composition can have important implications for planetary processes such as plate tectonics, atmospheric composition, or volcanism.
The Astrophysical Journal | 2010
J. I. González Hernández; G. Israelian; N. C. Santos; Sérgio Sousa; E. Delgado-Mena; V. Neves; S. Udry
We present a fully differential chemical abundance analysis using very high resolution (?/?? 85, 000) and very high signal-to-noise (S/N ~800 on average) HARPS and UVES spectra of 7 solar twins and 95 solar analogs, of which 24 are planet hosts and 71 are stars without detected planets. The whole sample of solar analogs provides very accurate Galactic chemical evolution trends in the metallicity range ?0.3 < [Fe/H] < 0.5. Solar twins with and without planets show similar mean abundance ratios. We have also analyzed a sub-sample of 28 solar analogs, 14 planet hosts, and 14 stars without known planets, with spectra at S/N ~850 on average, in the metallicity range 0.14 < [Fe/H] < 0.36, and find the same abundance pattern for both samples of stars with and without planets. This result does not depend on either the planet mass, from 7 Earth masses to 17.4 Jupiter masses, or the orbital period of the planets, from 3 to 4300 days. In addition, we have derived the slope of the abundance ratios as a function of the condensation temperature for each star and again find similar distributions of the slopes for both stars with and without planets. In particular, the peaks of these two distributions are placed at a similar value but with the opposite sign to that expected from a possible signature of terrestrial planets. In particular, two of the planetary systems in this sample, each of them containing a super-Earth-like planet, show slope values very close to these peaks, which may suggest that these abundance patterns are not related to the presence of terrestrial planets.
Astronomy and Astrophysics | 2013
V. Zh. Adibekyan; P. Figueira; N. C. Santos; A. A. Hakobyan; S. G. Sousa; G. Pace; E. Delgado Mena; A. C. Robin; G. Israelian; J. I. González Hernández
(Abridged) We analyze chemical and kinematical properties of about 850 FGK solar neighborhood long-lived dwarfs observed with the HARPS high-resolution spectrograph. The stars in the sample have logg > 4 dex, 5000 < Teff < 6500 K, and -1.39 < [Fe/H] < 0.55 dex. We apply a purely chemical analysis approach based on the [alpha/Fe] vs. [Fe/H] plot to separate Galactic stellar populations into the thin disk, thick disk and high-alpha metal-rich (hamr). Our analysis shows a negative gradient of the rotational velocity of the thin disk stars with [Fe/H] (-17 km s^-1 dex^-1), and a steep positive gradient for both the thick disk and hamr stars with the same magnitude of about +42 km s^-1 dex^-1. For the thin disk stars we observed no correlation between orbital eccentricities and metallicity, but observed a steep negative gradient for the thick disk and hamr stars with practically the same magnitude (about -0.18 dex^-1). Our results suggest that radial migration played an important role in the formation and evolution of the thin disk. For the thick disk stars it is not possible to reach a firm conclusion about their origin. Based on the eccentricity distribution of the thick disk stars only their accretion origin can be ruled out, and the heating and migration scenario could explain the positive steep gradient of V_phi with [Fe/H]. Analyzing the hamr stellar population we found that they share properties of both the thin and thick disk population. A comparison of the properties of the hamr stars with that of the subsample of stars from the N-body/SPH simulation using radial migration suggest that they may have originated from the inner Galaxy. Further detailed investigations would help to clarify their exact nature and origin.
The Astrophysical Journal | 2008
Susana Iglesias-Groth; Arturo Manchado; D. A. García-Hernández; J. I. González Hernández; David L. Lambert
We report high-resolution spectroscopy of the moderately reddened ( -->AV = 3) early-type star Cernis 52 located in a region of the Perseus molecular cloud complex with anomalous microwave emission. In addition to the presence of the most common diffuse interstellar bands (DIBs) we detect two new interstellar or circumstellar bands coincident to within 0.01% in wavelength with the two strongest bands of the naphthalene cation (C10H -->8+) as measured in gas-phase laboratory spectroscopy at low temperatures and find marginal evidence for the third strongest band. Assuming these features are caused by the naphthalene cation, from the measured intensity and available oscillator strengths we find that 0.008% of the carbon in the cloud could be in the form of this molecule. We expect hydrogen additions to cause hydronaphthalene cations to be abundant in the cloud and to contribute via electric dipole radiation to the anomalous microwave emission. The identification of new interstellar features consistent with transitions of the simplest polycyclic aromatic hydrocarbon adds support to the hypothesis that this type of molecules are the carriers of both diffuse interstellar bands and anomalous microwave emission.
Astronomy and Astrophysics | 2012
V. Zh. Adibekyan; N. C. Santos; S. G. Sousa; G. Israelian; E. Delgado Mena; J. I. González Hernández; Michel Mayor; Christophe Lovis; S. Udry
We present the results for a chemical abundance analysis between planet-hosting and stars without planets for 12 refractory elements for a total of 1111 nearby FGK dwarf stars observed within the context of the HARPS GTO programs. Of these stars, 109 are known to harbour high-mass planetary companions and 26 stars are hosting exclusively Neptunians and super-Earths. We found that the [X/Fe] ratios for Mg, Al, Si, Sc, and Ti both for giant and low-mass planet hosts are systematically higher than those of comparison stars at low metallicities ([Fe/H] < from −0.2 to 0.1 dex depending on the element). The most evident discrepancy between planet-hosting and stars without planets is observed for Mg. Our data suggest that the planet incidence is greater among the thick disk population than among the thin disk for mettallicities bellow −0.3 dex. After examining the [α/Fe] trends of the planet host and non-host samples we conclude that a certain chemical composition, and not the Galactic birth place of the stars, is the determinating factor for that. The inspection of the Galactic orbital parameters and kinematics of the planet-hosting stars shows that Neptunian hosts tend to belong to the “thicker” disk compared to their high-mass planet-hosting counterparts. We also found that Neptunian hosts follow the distribution of high-α stars in the UW vs. V velocities space, but they are more enhanced in Mg than high-α stars without planetary companions. Our results indicate that some metals other than iron may also have an important contribution to planet formation if the amount of iron is low. These results may provide strong constraints for the models of planet formation, especially for planets with low mass.