Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. I. Sukhanova is active.

Publication


Featured researches published by E. I. Sukhanova.


Biochimica et Biophysica Acta | 2010

Prevention of cardiolipin oxidation and fatty acid cycling as two antioxidant mechanisms of cationic derivatives of plastoquinone (SkQs)

Vladimir P. Skulachev; Yury Nikolaevich Antonenko; Dmitry A. Cherepanov; Boris V. Chernyak; Denis S. Izyumov; Ludmila S. Khailova; Sergey S. Klishin; Galina A. Korshunova; Konstantin G. Lyamzaev; Olga Yu. Pletjushkina; Vitaly Roginsky; Tatiana I. Rokitskaya; Fedor F. Severin; Inna I. Severina; Ruben A. Simonyan; Maxim V. Skulachev; Natalia V. Sumbatyan; E. I. Sukhanova; Vadim N. Tashlitsky; T. A. Trendeleva; Mikhail Yu. Vyssokikh; R. A. Zvyagilskaya

The present state of the art in studies on the mechanisms of antioxidant activities of mitochondria-targeted cationic plastoquinone derivatives (SkQs) is reviewed. Our experiments showed that these compounds can operate as antioxidants in two quite different ways, i.e. (i) by preventing peroxidation of cardiolipin [Antonenko et al., Biochemistry (Moscow) 73 (2008) 1273-1287] and (ii) by fatty acid cycling resulting in mild uncoupling that inhibits the formation of reactive oxygen species (ROS) in mitochondrial State 4 [Severin et al. Proc. Natl. Acad. Sci. USA 107 (2009), 663-668]. The quinol and cationic moieties of SkQ are involved in cases (i) and (ii), respectively. In case (i) SkQH2 interrupts propagation of chain reactions involved in peroxidation of unsaturated fatty acid residues in cardiolipin, the formed SkQ- being reduced back to SkQH2 by heme bH of complex III in an antimycin-sensitive way. Molecular dynamics simulation showed that there are two stable conformations of SkQ1 with the quinol residue localized near peroxyl radicals at C9 or C13 of the linoleate residue in cardiolipin. In mechanism (ii), fatty acid cycling mediated by the cationic SkQ moiety is involved. It consists of (a) transmembrane movement of the fatty acid anion/SkQ cation pair and (b) back flows of free SkQ cation and protonated fatty acid. The cycling results in a protonophorous effect that was demonstrated in planar phospholipid membranes and liposomes. In mitochondria, the cycling gives rise to mild uncoupling, thereby decreasing membrane potential and ROS generation coupled to reverse electron transport in the respiratory chain. In yeast cells, dodecyltriphenylphosphonium (capital ES, Cyrillic12TPP), the cationic part of SkQ1, induces uncoupling that is mitochondria-targeted since capital ES, Cyrillic12TPP is specifically accumulated in mitochondria and increases the H+ conductance of their inner membrane. The conductance of the outer cell membrane is not affected by capital ES, Cyrillic12TPP.


Journal of Bioenergetics and Biomembranes | 2009

Induction of a non-specific permeability transition in mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts

Mariya V. Kovaleva; E. I. Sukhanova; T. A. Trendeleva; Marina V. Zyl’kova; Ludmila Ural’skaya; Kristina M. Popova; Nils-Erik L. Saris; R. A. Zvyagilskaya

In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, possessing a respiratory chain with the usual three points of energy conservation. High-amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating induction of the mitochondrial permeability transition due to opening of a pore (mPTP). Mitochondria from Y. lipolytica, lacking a natural mitochondrial Ca2+ uptake pathway, and from D. magnusii, harboring a high-capacitive, regulated mitochondrial Ca2+ transport system (Bazhenova et al. J Biol Chem 273:4372–4377, 1998a; Bazhenova et al. Biochim Biophys Acta 1371:96–100, 1998b; Deryabina and Zvyagilskaya Biochemistry (Moscow) 65:1352–1356, 2000; Deryabina et al. J Biol Chem 276:47801–47806, 2001) were very resistant to Ca2+ overload. However, exposure of yeast mitochondria to 50–100 µM Ca2+ in the presence of the Ca2+ ionophore ETH129 induced collapse of the membrane potential, possibly due to activation of the fatty acid-dependent Ca2+/nH+-antiporter, with no classical mPTP induction. The absence of response in yeast mitochondria was not simply due to structural limitations, since large-amplitude swelling occurred in the presence of alamethicin, a hydrophobic, helical peptide, forming voltage-sensitive ion channels in lipid membranes. Ca2+- ETH129-induced activation of the Ca2+/H+-antiport system was inhibited and prevented by bovine serum albumin, and partially by inorganic phosphate and ATP. We subjected yeast mitochondria to other conditions known to induce the permeability transition in animal mitochondria, i.e., Ca2+ overload (in the presence of ETH129) combined with palmitic acid (Mironova et al. J Bioenerg Biomembr 33:319–331, 2001; Sultan and Sokolove Arch Biochem Biophys 386:37–51, 2001), SH-reagents, carboxyatractyloside (an inhibitor of the ADP/ATP translocator), depletion of intramitochondrial adenine nucleotide pools, deenergization of mitochondria, and shifting to acidic pH values in the presence of high phosphate concentrations. None of the above-mentioned substances or conditions induced a mPTP-like pore. It is thus evident that the permeability transition in yeast mitochondria is not coupled with Ca2+ uptake and is differently regulated compared to the mPTP of animal mitochondria.


Biochemistry | 2014

Alternative Oxidase: Distribution, Induction, Properties, Structure, Regulation, and Functions

A. G. Rogov; E. I. Sukhanova; L. A. Uralskaya; D. A. Aliverdieva; R. A. Zvyagilskaya

The respiratory chain in the majority of organisms with aerobic type metabolism features the concomitant existence of the phosphorylating cytochrome pathway and the cyanide- and antimycin A-insensitive oxidative route comprising a so-called alternative oxidase (AOX) as a terminal oxidase. In this review the history of AOX discovery is described. Considerable evidence is presented that AOX occurs widely in organisms at various levels of organization and is not confined to the plant kingdom. This enzyme has not been found only in Archaea, mammals, some yeasts and protists. Bioinformatics research revealed the sequences characteristic of AOX in representatives of various taxonomic groups. Based on multiple alignments of these sequences, a phylogenetic tree was constructed to infer their possible evolution. The ways of AOX activation, as well as regulatory interactions between AOX and the main respiratory chain are described. Data are summarized concerning the properties of AOX and the AOX-encoding genes whose expression is either constitutive or induced by various factors. Information is presented on the structure of AOX, its active center, and the ubiquinone-binding site. The principal functions of AOX are analyzed, including the cases of cell survival, optimization of respiratory metabolism, protection against excess of reactive oxygen species, and adaptation to variable nutrition sources and to biotic and abiotic stress factors. It is emphasized that different AOX functions complement each other in many instances and are not mutually exclusive. Examples are given to demonstrate that AOX is an important tool to overcome the adverse aftereffects of restricted activity of the main respiratory chain in cells and whole animals. This is the first comprehensive review on alternative oxidases of various organisms ranging from yeasts and protists to vascular plants.


Biochemistry | 2012

Interaction of tetraphenylphosphonium and dodecyltriphenylphosphonium with lipid membranes and mitochondria

T. A. Trendeleva; A. G. Rogov; Dmitry A. Cherepanov; E. I. Sukhanova; T. M. Il’yasova; Inna I. Severina; R. A. Zvyagilskaya

The permeability of a planar lipid membrane (composed of diphytanoylphosphatidylcholine) for tetraphenylphosphonium (TPP) was investigated. The observed level of the diffusion potential generated as a function of the TPP concentration gradient differed from the theoretically expected value, possibly due to proton leakage of the membrane mediated by the traces of fatty acids in the phospholipid forming the membrane. Using the molecular dynamics approach to study movement of TPP and dodecyltriphenylphosphonium (C12TPP) with different affinity to the lipid bilayer through a bilayer lipid membrane, it was found that C12TPP has a greater affinity to the membrane surface than TPP. However, the two cations have the same activation energy for transmembrane transfer. Interaction of TPP and C12TPP with tightly-coupled mitochondria from the yeast Yarrowia lipolytica was also investigated. At low, micromolar concentrations, both cations are “relatively weak, mild uncouplers”, do not shunt electron transfer along the respiratory chain, do not disturb (damage) the inner mitochondrial membrane, and profoundly promote the uncoupling effect of fatty acids. At higher concentrations they inhibit respiration in state 3, and at much higher concentrations they induce swelling of mitochondria, possibly due to their detergent action.


Biochemistry | 2010

Interaction of yeast mitochondria with fatty acids and mitochondria-targeted lipophilic cations

E. I. Sukhanova; T. A. Trendeleva; R. A. Zvyagilskaya

The effect of fatty acids and mitochondria-targeted lipophilic cations (SkQ1, SkQ3, MitoQ, and C12TPP) on tightly-coupled mitochondria from yeasts Dipodascus (Endomyces) magnusii and Yarrowia lipolytica was investigated. Micromolar concentrations of saturated and unsaturated fatty acids were found to decrease the membrane potential, which was recovered almost totally by ATP and BSA. At low, micromolar concentrations, mitochondria-targeted lipophilic cations are “relatively weak, mild uncouplers”, at higher concentrations they inhibit respiration in state 3, and at much higher concentrations they induce swelling of mitochondria, possibly due to their prooxidant and detergent action. At very low, not uncoupling concentrations, mitochondria-targeted lipophilic cations profoundly promote (potentiate) the uncoupling effect of fatty acids. It is conceivable that the observed uncoupling effect of lipophilic cations can be, at least partially, due to their interactions with the endogenous pool of fatty acids.


Biochemistry | 2010

Induction of permeability of the inner membrane of yeast mitochondria

Mariya V. Kovaleva; E. I. Sukhanova; T. A. Trendeleva; K. M. Popova; M. V. Zylkova; L. A. Uralskaya; R. A. Zvyagilskaya

The current view on apoptosis is given, with a special emphasis placed on apoptosis in yeasts. Induction of a non-specific permeability transition pore (mPTP) in mammalian and yeast mitochondria is described, particularly in mitochon-dria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, which are aerobes possessing the fully competent respiratory chain with all three points of energy conservation and well-structured mitochondria. They were examined for their ability to induce an elevated permeability transition of the inner mitochondrial membrane, being subjected to virtually all conditions known to induce the mPTP in animal mitochondria. Yeast mitochondria do not form Ca2+-dependent pores, neither the classical Ca2+/Pi-dependent, cyclosporin A-sensitive pore even under deenergization of mitochondria or depletion of the intramitochondrial nucleotide pools, nor a pore induced in mammalian mitochondria upon concerted action of moderate Ca2+ concentrations (in the presence of the Ca2+ ionophore ETH129) and saturated fatty acids. No pore formation was found in yeast mitochondria in the presence of elevated phosphate concentrations at acidic pH values. It is concluded that the permeability transition in yeast mitochondria is not coupled with Ca2+ uptake and is differently regulated compared to the mPTP of animal mitochondria.


Biochemistry | 2012

Phenoptosis in Yeasts

E. I. Sukhanova; A. G. Rogov; Fedor F. Severin; R. A. Zvyagilskaya

The current view on phenoptosis and apoptosis as genetic programs aimed at eliminating potentially dangerous organisms and cells, respectively, is given. Special emphasis is placed on apoptosis (phenoptosis) in yeasts: intracellular defects and a plethora of external stimuli inducing apoptosis in yeasts; distinctive morphological and biochemical hallmarks accompanying apoptosis in yeasts; pro- and antiapoptotic factors involved in yeast apoptosis signaling; consecutive stages of apoptosis from external stimulus to the cell death; a prominent role of mitochondria and other organelles in yeast apoptosis; possible pathways for release of apoptotic factors from the intermembrane mitochondrial space into the cytosol are described. Using some concrete examples, the obvious physiological importance and expediency of altruistic death of yeast cells is shown. Poorly known aspects of yeast apoptosis and prospects for yeast apoptosis study are defined.


Journal of Bioenergetics and Biomembranes | 2011

Effect of prooxidants on yeast mitochondria

Tat’yana Trendeleva; E. I. Sukhanova; Ludmila Ural’skaya; Nils-Erik L. Saris; R. A. Zvyagilskaya

Tightly coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts were used in this study. The two yeasts are aerobes containing the fully competent respiratory chain with three energy conservation sites. Interaction of the yeast mitochondria with prooxidants (diamide, menadione, oxaloacetate, phenylarsine oxide, hydrogen peroxide, t-butyl peroxide, and ascorbate plus Fe2+) was studied. The prooxidants, depending on their chemical nature, either caused uncoupling (e.g., activated state 4 respiration) or inhibited oxidation of respiratory substrates. All of the agents dissipated the membrane potential without megachannel formation (no large-scale swelling of mitochondria was observed). Except for combined application of ascorbate and Fe2+, the prooxidant-induced decrease in the membrane potential was specifically prevented by ATP, even in the cases when classic antioxidants, e.g., N-acetylcysteine, were ineffective. No permeabilization of yeast mitochondria was observed under concerted action of prooxidants and Ca2+, suggesting that an mPTP-like pore, if it ever occurs in yeast mitochondria, is not coupled with Ca2+ uptake.


Journal of Bioenergetics and Biomembranes | 2011

Mitochondria from Dipodascus (Endomyces) magnusii and Yarrowia lipolytica yeasts did not undergo a Ca2+-dependent permeability transition even under anaerobic conditions

Tat’yana Trendeleva; E. I. Sukhanova; Ludmila Ural’skaya; Nils-Erik L. Saris; R. A. Zvyagilskaya


Biochimica et Biophysica Acta | 2010

Effect of fatty acids and mitochondria-targeted lipophilic cations on yeast mitochondria

T. A. Trendeleva; E. I. Sukhanova; R. A. Zvyagilskaya

Collaboration


Dive into the E. I. Sukhanova's collaboration.

Top Co-Authors

Avatar

R. A. Zvyagilskaya

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

T. A. Trendeleva

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. G. Rogov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mariya V. Kovaleva

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. A. Uralskaya

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge