E. M. de Gouveia Dal Pino
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. M. de Gouveia Dal Pino.
Astronomy and Astrophysics | 2005
E. M. de Gouveia Dal Pino; A. Lazarian
We propose here that the large-scale superluminal ejections observed in the galactic microquasar GRS 1915+105 during radio flare events are produced by violent magnetic reconnection episodes in the corona just above the inner edge of the magnetized accretion disk that surrounds the central ∼10 Mblack hole. The process occurs when a large-scale magnetic field is established by a turbulent dynamo in the inner disk region with a ratio between the gas+radiation and the magnetic pressures β � 1, implying a magnetic field intensity of ∼7 × 10 8 G. During this process, substantial angular momentum is removed from the disk by the wind generated by the vertical magnetic flux therefore increasing the disk mass accretion to a value near (but below) the critical one ( u M ∼ 10 19 gs −1 ). Part of the magnetic energy released by reconnection heats the coronal gas (Tc 5 × 10 8 K) that produces a steep X-ray spectrum with luminosity LX � 10 39 erg s −1 , consistent with observations. The remaining magnetic energy released goes to accelerate the particles to relativistic velocities (v ∼ vA ∼ c ,w herevA is the Alfven speed) in the reconnection site through first-order Fermi processes. In this context, two possible mechanisms have been examined that produce power-law electron distributions N(E) ∝ E −αE , with αE = 5/2, 2, and corresponding synchrotron radio power-law spectra with spectral indices which are compatible with that observed during the flares (S ν ∝ ν −0.75,−0.5 ).
Astronomy and Astrophysics | 2008
G. A. Guerrero; E. M. de Gouveia Dal Pino
Context. The turbulent pumping effect corresponds to the transport of magnetic flux due to the presence of density and turbulence gradients in convectively unstable layers. In the induction equation it appears as an advective term and for this reason it is expected to be important in the solar and stellar dynamo processes. Aims. We explore the effects of turbulent pumping in a flux-dominated Babcock-Leighton solar dynamo model with a solar-like rotation law. Methods. As a first step, only vertical pumping has been considered through the inclusion of a radial diamagnetic term in the induction equation. In the second step, a latitudinal pumping term was included and then, a near-surface shear was included. Results. The results reveal the importance of the pumping mechanism in solving current limitations in mean field dynamo modeling, such as the storage of the magnetic flux and the latitudinal distribution of the sunspots. If a meridional flow is assumed to be present only in the upper part of the convective zone, it is the full turbulent pumping that regulates both the period of the solar cycle and the latitudinal distribution of the sunspot activity. In models that consider shear near the surface, a second shell of toroidal field is
Astronomy and Astrophysics | 2002
A. C. Raga; E. M. de Gouveia Dal Pino; Alberto Noriega-Crespo; Pablo D. Mininni; P. F. Velázquez
We present 3D, gasdynamic simulations of jet/cloud collisions, with the purpose of modelling the HH 270/110 system. From the models, we obtain predictions of Hα and H_2 1–0 s(1) emission line maps, which qualitatively reproduce some of the main features of the corresponding observations of HH 110. We find that the model that better reproduces the observed structures corresponds to a jet that was deflected at the surface of the cloud ~1000 yr ago, but is now boring a tunnel directly into the cloud. This model removes the apparent contradiction between the jet/cloud collision model and the lack of detection of molecular emission in the crossing region of the HH 270 and HH 110 axes.
The Astrophysical Journal | 2012
R. Santos-Lima; E. M. de Gouveia Dal Pino; A. Lazarian
The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions ~100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star and planet formation.
The Astrophysical Journal | 2011
G. Kowal; E. M. de Gouveia Dal Pino; A. Lazarian
Magnetic fields can change their topology through a process known as magnetic reconnection. This process in not only important for understanding the origin and evolution of the large-scale magnetic field, but is seen as a possibly efficient particle accelerator producing cosmic rays mainly through the first-order Fermi process. In this work we study the properties of particle acceleration inserted in reconnection zones and show that the velocity component parallel to the magnetic field of test particles inserted in magnetohydrodynamic (MHD) domains of reconnection without including kinetic effects, such as pressure anisotropy, the Hall term, or anomalous effects, increases exponentially. Also, the acceleration of the perpendicular component is always possible in such models. We find that within contracting magnetic islands or current sheets the particles accelerate predominantly through the first-order Fermi process, as previously described, while outside the current sheets and islands the particles experience mostly drift acceleration due to magnetic field gradients. Considering two-dimensional MHD models without a guide field, we find that the parallel acceleration stops at some level. This saturation effect is, however, removed in the presence of an out-of-plane guide field or in three-dimensional models. Therefore, we stress the importance of the guide field and fully three-dimensional studies for a complete understanding of the process of particle acceleration in astrophysical reconnection environments.
The Astrophysical Journal | 2010
R. Santos-Lima; A. Lazarian; E. M. de Gouveia Dal Pino; Jungyeon Cho
The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar. In addition, we benchmark our codes by studying the heat transfer in magnetized compressible fluids and confirm the high rates of turbulent advection of heat obtained in an earlier study.
Astronomy and Astrophysics | 2004
C. Melioli; E. M. de Gouveia Dal Pino
The interstellar medium heated by supernova explosions (SN) may acquire an expansion velocity larger than the escape velocity and leave the galaxy through a supersonic wind. Galactic winds are effectively observed in many local starburst galaxies. SN ejecta are transported out of the galaxies by such winds which thus affect the chemical evolution of the galaxies. The effectiveness of the processes mentioned above depends on the heating efficiency (HE) of the SNe, i.e. on the fraction of SN energy which is not radiated away. The value of HE, in particular in starburst (SB) galaxies, is a matter of debate. We have constructed a simple semi-analytic model, considering the essential ingredients of a SB environment which is able to qualitatively trace the thermalisation history of the ISM in a SB region and determine the HE evolution. Our study has been also accompanied by fully 3-D radiative cooling, hydrodynamical simulations of SNR-SNR and SNR-clouds interactions. We find that, as long as the typical time scale of mass-loss of the clouds to the ambient medium, which is often dominated by photoevaporation, remains shorter than the time scale at which the SNRs interact to form a superbubble, the SN heating efficiency remains very small, as radiative cooling of the gas dominates. If there is a continuous production of clouds by the gas swept by the SNR shells, this occurs during the first ≤ 16 Myr of the SB activity (of∼30 Myr), after which the efficiency rapidly increases to one, leading to a possible galactic wind formation. Under an extreme condition in which no clouds are allowed to form, other than those that were already initially present in the SB environment, then in this case HE increases to one in only few Myr. We conclude that the HE value has a time-dependent trend that is sensitive to the initial conditions of the system and cannot be simply assumed to be ∼1, as it is commonly done in most SB galactic wind models.
The Astrophysical Journal | 1993
E. M. de Gouveia Dal Pino; Willy Benz
We present the first results of fully three-dimensional (3D) simulations of supersonic, radiatively cooling jets using the smoothed particle hydrodynamics technique (SPH). Our results qualitatively agree with the two-dimensional (2D) simulations of Blondin, Fryxell, & Konigl (1990), although the removal of the axisymmetry has resulted in relevant structural differences, especially at the jet head where a cold shell is formed from the condensation of shock-heated material. In particular, we found that the shell is not only dynamically unstable but also may undergo oscillations in density, which are attributed to global thermal instabilities. These effects may have important consequences on the dynamics and emission pattern of the observed HH objects associated to young stellar jets
Astroparticle Physics | 2013
H. Sol; A. Zech; C. Boisson; U. Barres de Almeida; J. Biteau; J. L. Contreras; B. Giebels; T. Hassan; Y. Inoue; K. Katarzynski; H. Krawczynski; Nestor Rafael Mirabal; Juri Poutanen; F. Rieger; Tomonori Totani; W. Benbow; M. Cerruti; M. Errando; Lisa Fallon; E. M. de Gouveia Dal Pino; J. A. Hinton; Susumu Inoue; J.-P. Lenain; A. Neronov; Keitaro Takahashi; H. Takami; R. White
Abstract Active Galactic Nuclei (hereafter AGN) produce powerful outflows which offer excellent conditions for efficient particle acceleration in internal and external shocks, turbulence, and magnetic reconnection events. The jets as well as particle accelerating regions close to the supermassive black holes (hereafter SMBH) at the intersection of plasma inflows and outflows, can produce readily detectable very high energy gamma-ray emission. As of now, more than 45 AGN including 41 blazars and 4 radiogalaxies have been detected by the present ground-based gamma-ray telescopes, which represents more than one third of the cosmic sources detected so far in the VHE gamma-ray regime. The future Cherenkov Telescope Array (CTA) should boost the sample of AGN detected in the VHE range by about one order of magnitude, shedding new light on AGN population studies, and AGN classification and unification schemes. CTA will be a unique tool to scrutinize the extreme high-energy tail of accelerated particles in SMBH environments, to revisit the central engines and their associated relativistic jets, and to study the particle acceleration and emission mechanisms, particularly exploring the missing link between accretion physics, SMBH magnetospheres and jet formation. Monitoring of distant AGN will be an extremely rewarding observing program which will inform us about the inner workings and evolution of AGN. Furthermore these AGN are bright beacons of gamma-rays which will allow us to constrain the extragalactic infrared and optical backgrounds as well as the intergalactic magnetic field, and will enable tests of quantum gravity and other “exotic” phenomena.
Space Science Reviews | 2012
A. Lazarian; Loukas Vlahos; G. Kowal; Huirong Yan; A. Beresnyak; E. M. de Gouveia Dal Pino
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700–718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.