G. Kowal
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by G. Kowal.
The Astrophysical Journal | 2011
G. Kowal; E. M. de Gouveia Dal Pino; A. Lazarian
Magnetic fields can change their topology through a process known as magnetic reconnection. This process in not only important for understanding the origin and evolution of the large-scale magnetic field, but is seen as a possibly efficient particle accelerator producing cosmic rays mainly through the first-order Fermi process. In this work we study the properties of particle acceleration inserted in reconnection zones and show that the velocity component parallel to the magnetic field of test particles inserted in magnetohydrodynamic (MHD) domains of reconnection without including kinetic effects, such as pressure anisotropy, the Hall term, or anomalous effects, increases exponentially. Also, the acceleration of the perpendicular component is always possible in such models. We find that within contracting magnetic islands or current sheets the particles accelerate predominantly through the first-order Fermi process, as previously described, while outside the current sheets and islands the particles experience mostly drift acceleration due to magnetic field gradients. Considering two-dimensional MHD models without a guide field, we find that the parallel acceleration stops at some level. This saturation effect is, however, removed in the presence of an out-of-plane guide field or in three-dimensional models. Therefore, we stress the importance of the guide field and fully three-dimensional studies for a complete understanding of the process of particle acceleration in astrophysical reconnection environments.
Space Science Reviews | 2012
A. Lazarian; Loukas Vlahos; G. Kowal; Huirong Yan; A. Beresnyak; E. M. de Gouveia Dal Pino
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700–718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.
Philosophical Transactions of the Royal Society A | 2015
A. Lazarian; Gregory L. Eyink; Ethan T. Vishniac; G. Kowal
Magnetic reconnection is a process of magnetic field topology change, which is one of the most fundamental processes happening in magnetized plasmas. In most astrophysical environments, the Reynolds numbers corresponding to plasma flows are large and therefore the transition to turbulence is inevitable. This turbulence, which can be pre-existing or driven by magnetic reconnection itself, must be taken into account for any theory of magnetic reconnection that attempts to describe the process in the aforementioned environments. This necessity is obvious as three-dimensional high-resolution numerical simulations show the transition to the turbulence state of initially laminar reconnecting magnetic fields. We discuss ideas of how turbulence can modify reconnection with the focus on the Lazarian & Vishniac (Lazarian & Vishniac 1999 Astrophys. J. 517, 700–718 ()) reconnection model. We present numerical evidence supporting the model and demonstrate that it is closely connected to the experimentally proven concept of Richardson dispersion/diffusion as well as to more recent advances in understanding of the Lagrangian dynamics of magnetized fluids. We point out that the generalized Ohms law that accounts for turbulent motion predicts the subdominance of the microphysical plasma effects for reconnection for realistically turbulent media. We show that one of the most dramatic consequences of turbulence is the violation of the generally accepted notion of magnetic flux freezing. This notion is a cornerstone of most theories dealing with magnetized plasmas, and therefore its change induces fundamental shifts in accepted paradigms, for instance, turbulent reconnection entails reconnection diffusion process that is essential for understanding star formation. We argue that at sufficiently high Reynolds numbers the process of tearing reconnection should transfer to turbulent reconnection. We discuss flares that are predicted by turbulent reconnection and relate this process to solar flares and γ-ray bursts. With reference to experiments, we analyse solar observations in situ as measurements in the solar wind or heliospheric current sheet and show the correspondence of data with turbulent reconnection predictions. Finally, we discuss first-order Fermi acceleration of particles that is a natural consequence of the turbulent reconnection.
The Astrophysical Journal | 2014
R. Santos-Lima; E. M. de Gouveia Dal Pino; G. Kowal; Diego Falceta-Goncalves; A. Lazarian; M. S. Nakwacki
The amplification of magnetic fields (MFs) in the intracluster medium (ICM) is attributed to turbulent dynamo (TD) action, which is generally derived in the collisional-MHD framework. However, this assumption is poorly justified a priori, since in the ICM the ion mean free path between collisions is of the order of the dynamical scales, thus requiring a collisionless MHD description. The present study uses an anisotropic plasma pressure that brings the plasma within a parametric space where collisionless instabilities take place. In this model, a relaxation term of the pressure anisotropy simulates the feedback of the mirror and firehose instabilities, in consistency with empirical studies. Our three-dimensional numerical simulations of forced transonic turbulence, aiming the modeling of the turbulent ICM, were performed for different initial values of the MF intensity and different relaxation rates of the pressure anisotropy. We found that in the high-β plasma regime corresponding to the ICM conditions, a fast anisotropy relaxation rate gives results that are similar to the collisional-MHD model, as far as the statistical properties of the turbulence are concerned. Also, the TD amplification of seed MFs was found to be similar to the collisional-MHD model. The simulations that do not employ the anisotropy relaxation deviate significantly from the collisional-MHD results and show more power at the small-scale fluctuations of both density and velocity as a result of the action of the instabilities. For these simulations, the large-scale fluctuations in the MF are mostly suppressed and the TD fails in amplifying seed MFs.
Nonlinear Processes in Geophysics | 2012
G. Kowal; A. Lazarian; Ethan T. Vishniac; Katarzyna Otmianowska-Mazur
Abstract. We study a model of fast magnetic reconnection in the presence of weak turbulence proposed by Lazarian and Vishniac (1999) using three-dimensional direct numerical simulations. The model has been already successfully tested in Kowal et al. (2009) confirming the dependencies of the reconnection speed Vrec on the turbulence injection power Pinj and the injection scale linj expressed by a constraint Vrec ~ Pinj1/2linj3/4and no observed dependency on Ohmic resistivity. In Kowal et al. (2009), in order to drive turbulence, we injected velocity fluctuations in Fourier space with frequencies concentrated around kinj = 1/linj, as described in Alvelius (1999). In this paper, we extend our previous studies by comparing fast magnetic reconnection under different mechanisms of turbulence injection by introducing a new way of turbulence driving. The new method injects velocity or magnetic eddies with a specified amplitude and scale in random locations directly in real space. We provide exact relations between the eddy parameters and turbulent power and injection scale. We performed simulations with new forcing in order to study turbulent power and injection scale dependencies. The results show no discrepancy between models with two different methods of turbulence driving exposing the same scalings in both cases. This is in agreement with the Lazarian and Vishniac (1999) predictions. In addition, we performed a series of models with varying viscosity ν. Although Lazarian and Vishniac (1999) do not provide any prediction for this dependence, we report a weak relation between the reconnection speed with viscosity, Vrec ~ ν−1/4.
Nonlinear Processes in Geophysics | 2014
D. Falceta-Goncalves; G. Kowal; E. Falgarone; Abraham C.-L. Chian
Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. De- spite its importance, interstellar turbulence, like turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetised cases. The most relevant observational techniques that provide quantitative insights into interstel- lar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of inter- stellar turbulence from these observations. Finally, we briefly present what the main sources of turbulence in the interstellar medium could be.
arXiv: High Energy Astrophysical Phenomena | 2015
Elisabete M. de Gouveia Dal Pino; G. Kowal
Observational data require a rich variety of mechanisms to accelerate fast particles in astrophysical environments operating under different conditions. The mechanisms discussed in the literature include varying magnetic fields in compact sources, stochastic processes in turbulent environments, and acceleration behind shocks. An alternative, much less explored mechanism involves particle acceleration within magnetic reconnection sites. In this chapter we discuss this mechanism and show that particles can be efficiently accelerated by magnetic reconnection through a first order Fermi process within large scale current sheets (specially when in the presence of local turbulence which speeds up the reconnection and make the acceleration region thicker) and also through a second order Fermi process in pure MHD turbulent environments.
Monthly Notices of the Royal Astronomical Society | 2015
Diego Falceta-Goncalves; Ian A. Bonnell; G. Kowal; J. R. D. Lépine; C. A. S. Braga
DFG thanks the European Research Council (ADG-2011 ECOGAL), and Brazilian agencies CAPES (3400-13-1) and FAPESP (no.2011/12909-8) for financial support. IB acknowledges the European Research Council (ADG-2011 ECOGAL) for financial support. GK acknowledges support from FAPESP (grants no. 2013/04073-2 and 2013/18815-0).
The Astrophysical Journal | 2013
Frédérick Poidevin; Diego Falceta-Goncalves; G. Kowal; Elisabete M. de Gouveia Dal Pino; A. M. Magalhaes
We present an extensive analysis of the 850 μm polarization maps of the SCUBA Polarimeter Legacy (SCUPOL) Catalogue produced by Matthews et al., focusing exclusively on the molecular clouds and star-forming regions. For the sufficiently sampled regions, we characterize the depolarization properties and the turbulent-to-mean magnetic field ratio of each region. Similar sets of parameters are calculated from two-dimensional synthetic maps of dustemission polarization produced with three-dimensional magnetohydrodynamics (MHD) numerical simulations scaled to the S106, OMC-2/3, W49, and DR21 molecular cloud polarization maps. For these specific regions, ( ◦ )( ◦ ) (%) ( ◦ )( ◦ ) t|| �
The Astrophysical Journal | 2017
G. Kowal; D. Falceta-Goncalves; A. Lazarian; Ethan T. Vishniac
Magnetic reconnection is a process that changes magnetic field topology in highly conducting fluids. Within the standard Sweet–Parker model, this process would be too slow to explain observations (e.g., solar flares). In reality, the process must be ubiquitous as astrophysical fluids are magnetized and motions of fluid elements necessarily entail crossing of magnetic frozen-in field lines and magnetic reconnection. In the presence of turbulence, the reconnection is independent of microscopic plasma properties and may be much faster than previously thought, as proposed in Lazarian & Vishniac and tested in Kowal et al. However, the considered turbulence in the Lazarian–Vishniac model was imposed externally. In this work, we consider reconnection-driven magnetized turbulence in realistic three-dimensional geometry initiated by stochastic noise. We demonstrate through numerical simulations that the stochastic reconnection is able to self-generate turbulence through interactions between the reconnection outflows. We analyze the statistical properties of velocity fluctuations using power spectra and anisotropy scaling in the local reference frame, which demonstrates that the reconnection produces Kolmogorov-like turbulence, compatible with the Goldreich & Sridhar model. Anisotropy statistics are, however, strongly affected by the dynamics of flows generated by the reconnection process. Once the broad turbulent region is formed, the typical anisotropy scaling is formed, especially for high resolution models, where the broader range of scales is available. The decay of reconnection outflows to turbulent-like fluctuations, characterized by different anisotropy scalings, strongly depends on the β plasma parameter. Moreover, the estimated reconnection rates are weakly dependent on the model resolution, suggesting that no external processes are required to make reconnection fast.