E. Magda Price
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Magda Price.
Epigenetics & Chromatin | 2013
E. Magda Price; Allison M. Cotton; Lucia L. Lam; Pau Farré; Eldon Emberly; Carolyn J. Brown; Wendy P. Robinson; Michael S. Kobor
BackgroundMeasurement of genome-wide DNA methylation (DNAm) has become an important avenue for investigating potential physiologically-relevant epigenetic changes. Illumina Infinium (Illumina, San Diego, CA, USA) is a commercially available microarray suite used to measure DNAm at many sites throughout the genome. However, it has been suggested that a subset of array probes may give misleading results due to issues related to probe design. To facilitate biologically significant data interpretation, we set out to enhance probe annotation of the newest Infinium array, the HumanMethylation450 BeadChip (450 k), with >485,000 probes covering 99% of Reference Sequence (RefSeq) genes (National Center for Biotechnology Information (NCBI), Bethesda, MD, USA). Annotation that was added or expanded on includes: 1) documented SNPs in the probe target, 2) probe binding specificity, 3) CpG classification of target sites and 4) gene feature classification of target sites.ResultsProbes with documented SNPs at the target CpG (4.3% of probes) were associated with increased within-tissue variation in DNAm. An example of a probe with a SNP at the target CpG demonstrated how sample genotype can confound the measurement of DNAm. Additionally, 8.6% of probes mapped to multiple locations in silico. Measurements from these non-specific probes likely represent a combination of DNAm from multiple genomic sites. The expanded biological annotation demonstrated that based on DNAm, grouping probes by an alternative high-density and intermediate-density CpG island classification provided a distinctive pattern of DNAm. Finally, variable enrichment for differentially methylated probes was noted across CpG classes and gene feature groups, dependant on the tissues that were compared.ConclusionDNAm arrays offer a high-throughput approach for which careful consideration of probe content should be utilized to better understand the biological processes affected. Probes containing SNPs and non-specific probes may affect the assessment of DNAm using the 450 k array. Additionally, probe classification by CpG enrichment classes and to a lesser extent gene feature groups resulted in distinct patterns of DNAm. Thus, we recommend that compromised probes be removed from analyses and that the genomic context of DNAm is considered in studies deciphering the biological meaning of Illumina 450 k array data.
Human Molecular Genetics | 2015
Allison M. Cotton; E. Magda Price; Meaghan J. Jones; Bradley P. Balaton; Michael S. Kobor; Carolyn J. Brown
X-chromosome inactivation (XCI) achieves dosage compensation between males and females through the silencing of the majority of genes on one of the female X chromosomes. Thus, the female X chromosomes provide a unique opportunity to study euchromatin and heterochromatin of allelic regions within the same nuclear environment. We examined the interplay of DNA methylation (DNAm) with CpG density, transcriptional activity and chromatin state at genes on the X chromosome using over 1800 female samples analysed with the Illumina Infinium Human Methylation450 BeadChip. DNAm was used to predict an inactivation status for 63 novel transcription start sites (TSSs) across 27 tissues. There was high concordance of inactivation status across tissues, with 62% of TSSs subject to XCI in all 27 tissues examined, whereas 9% escaped from XCI in all tissues, and the remainder showed variable escape from XCI between females in subsets of tissues. Inter-female and twin data supported a model of predominately cis-acting influences on inactivation status. The level of expression from the inactive X relative to the active X correlated with the amount of female promoter DNAm to a threshold of ∼30%, beyond which genes were consistently subject to inactivation. The inactive X showed lower DNAm than the active X at intragenic and intergenic regions for genes subject to XCI, but not at genes that escape from inactivation. Our categorization of genes that escape from X inactivation provides candidates for sex-specific differences in disease.
Epigenetics | 2012
E. Magda Price; Allison M. Cotton; Maria S. Peñaherrera; Deborah E. McFadden; Michael S. Kobor; Wendy P. Robinson
DNA methylation of CpGs located in two types of repetitive elements—LINE1 (L1) and Alu—is used to assess “global” changes in DNA methylation in studies of human disease and environmental exposure. L1 and Alu contribute close to 30% of all base pairs in the human genome and transposition of repetitive elements is repressed through DNA methylation. Few studies have investigated whether repetitive element DNA methylation is associated with DNA methylation at other genomic regions, or the biological and technical factors that influence potential associations. Here, we assess L1 and Alu DNA methylation by Pyrosequencing of consensus sequences and using subsets of probes included in the Illumina Infinium HumanMethylation27 BeadChip array. We show that evolutionary age and assay method affect the assessment of repetitive element DNA methylation. Additionally, we compare Pyrosequencing results for repetitive elements to average DNA methylation of CpG islands, as assessed by array probes classified into strong, weak and non-islands. We demonstrate that each of these dispersed sequences exhibits different patterns of tissue-specific DNA methylation. Correlation of DNA methylation suggests an association between L1 and weak CpG island DNA methylation in some of the tissues examined. We caution, however, that L1, Alu and CpG island DNA methylation are distinct measures of dispersed DNA methylation and one should not be used in lieu of another. Analysis of DNA methylation data is complex and assays may be influenced by environment and pathology in different or complementary ways.
Epigenetics | 2014
Kirsten Hogg; E. Magda Price; Wendy P. Robinson
Epigenetic variation is increasingly hypothesized as a mechanism underlying the effect of the in utero environment on long-term postnatal health; however, there is currently little clear data to support this in humans. A number of biological and technical factors provide challenges for the design of clinical epigenetic studies: from the type of cells or tissues that are available to the large range of predicted confounders that may impact findings. The human placenta, in addition to other neonatal tissues and whole blood, is commonly sampled for the study of epigenetic modifications. However there is little conformity for the most appropriate methods for study design, data analysis, and importantly, data interpretation. Here we present general recommendations for the reporting of DNA methylation in biological samples, with specific focus on the placenta. We outline key guidelines for: (1) placental sampling, (2) data analysis and presentation, and (3) interpretation of DNA methylation data. We emphasize the need to consider methodological noise, increase statistical power and to ensure appropriate adjustment for biological covariates. Finally, we highlight that epigenetic changes may be non-pathological and not necessarily translate into disease-associated changes. Improved reporting of DNA methylation data will be critical to identify epigenetic-based effects and to better understand the full phenotypic impact of these widely-reported epigenomic changes.
Human Mutation | 2014
Ying Qiao; Kajari Mondal; Valentina Trapani; Jiadi Wen; Gillian Carpenter; Robert Wildin; E. Magda Price; Richard J. Gibbons; Jennifer Eichmeyer; Ruby Jiang; Barbara DuPont; Sally Martell; Suzanne Lewis; Wendy P. Robinson; Mark O'Driscoll; Federica I. Wolf; Michael E. Zwick; Evica Rajcan-Separovic
A 0.8kb intronic duplication in MAGT1 and a single base pair deletion in the last exon of ATRX were identified using a chromosome X‐specific microarray and exome sequencing in a family with five males demonstrating intellectual disability (ID) and unusual skin findings (e.g., generalized pruritus). MAGT1 is an Mg2+ transporter previously associated with primary immunodeficiency and ID, whereas mutations in ATRX cause ATRX‐ID syndrome. In patient cells, the function of ATRX was demonstrated to be abnormal based on altered RNA/protein expression, hypomethylation of rDNA, and abnormal cytokinesis. Dysfunction of MAGT1 was reflected in reduced RNA/protein expression and Mg2+ influx. The mutation in ATRX most likely explains the ID, whereas MAGT1 disruption could be linked to abnormal skin findings, as normal magnesium homeostasis is necessary for skin health. This work supports observations that multiple mutations collectively contribute to the phenotypic variability of syndromic ID, and emphasizes the importance of correlating clinical phenotype with genomic and cell function analyses.
Epigenetics | 2012
E. Magda Price; Wendy P. Robinson
We are responding to a Letter to the Editor addressing the Method section of our paper “Different measures of ‘genome-wide’ DNA methylation exhibit unique properties in placental and somatic tissues.” The letter raised concerns that the protocol for Epigentek’s MethylFlash kit was followed incorrectly based on the wording of an online publication of our article. We admittedly made an error in the language used to describe the MethylFlash protocol in our initial submission and thus this was corrected as soon as it was brought to our attention. However, the error was only in language and not procedure. We are confident that the protocol was followed as stated in the insert provided with the MethylFlashTM Methylated DNA Quantification kit (Colorimetric).
Clinical Epigenetics | 2018
Giulia F. Del Gobbo; E. Magda Price; Courtney W. Hanna; Wendy P. Robinson
Background5,10-Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in one-carbon metabolism that ensures the availability of methyl groups for methylation reactions. Two single-nucleotide polymorphisms (SNPs) in the MTHFR gene, 677C>T and 1298A>C, result in a thermolabile enzyme with reduced function. These variants, in both the maternal and/or fetal genes, have been associated with pregnancy complications including miscarriage, neural tube defects (NTDs), and preeclampsia (PE), perhaps due to altered capacity for DNA methylation (DNAm). In this study, we assessed the association between MTHFR 677TT and 1298CC genotypes and risk of NTDs, PE, or normotensive intrauterine growth restriction (nIUGR). Additionally, we assessed whether these high-risk genotypes are associated with altered DNAm in the placenta.ResultsIn 303 placentas screened for this study, we observed no significant association between the occurrence of NTDs (N = 55), PE (early-onset: N = 28, late-onset: N = 20), or nIUGR (N = 21) and placental (fetal) MTHFR 677TT or 1298CC genotypes compared to healthy pregnancies (N = 179), though a trend of increased 677TT genotype in PE/IUGR together was observed (OR 2.53, p = 0.048). DNAm was profiled in 10 high-risk 677 (677TT + 1298AA), 10 high-risk 1298 (677CC + 1298CC), and 10 reference (677CC + 1298AA) genotype placentas. Linear modeling identified no significantly differentially methylated sites between high-risk 677 or 1298 and reference placentas at a false discovery rate < 0.05 and Δβ ≥ 0.05 using the Illumina Infinium HumanMethylation450 BeadChip. Using a differentially methylated region analysis or separating cytosine-guanine dinucleotides (CpGs) by CpG density to reduce multiple comparisons also did not identify differential methylation. Additionally, there was no consistent evidence for altered methylation of repetitive DNA between high-risk and reference placentas.ConclusionsWe conclude that large-scale, genome-wide disruption in DNAm does not occur in placentas with the high-risk MTHFR 677TT or 1298CC genotypes. Furthermore, there was no evidence for an association of the 1298CC genotype and only a tendency to higher 677TT in pregnancy complications of PE/IUGR. This may be due to small sample sizes or folate repletion in our Canadian population attenuating effects of the high-risk MTHFR variants. However, given our results and the conflicting results in the literature, investigations into alternative mechanisms that may explain the link between MTHFR variants and pregnancy complications, or in populations at risk of folate deficiencies, are warranted.
Clinical Epigenetics | 2015
Olivia M. de Goede; Hamid Reza Razzaghian; E. Magda Price; Meaghan J. Jones; Michael S. Kobor; Wendy P. Robinson; Pascal M. Lavoie
American Journal of Human Genetics | 2012
John D. Blair; E. Magda Price
Epigenetics & Chromatin | 2016
E. Magda Price; Maria S. Peñaherrera; Elodie Portales-Casamar; Paul Pavlidis; Margot I. Van Allen; Deborah E. McFadden; Wendy P. Robinson