E. Marielle Hijmans
Netherlands Cancer Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Marielle Hijmans.
Nature | 2004
Katrien Berns; E. Marielle Hijmans; Jasper Mullenders; Thijn R. Brummelkamp; Arno Velds; Mike Heimerikx; Ron M. Kerkhoven; Mandy Madiredjo; Wouter Nijkamp; Britta Weigelt; Reuven Agami; Wei Ge; Guy Cavet; Peter S. Linsley; Roderick L. Beijersbergen; René Bernards
RNA interference (RNAi) is a powerful new tool with which to perform loss-of-function genetic screens in lower organisms and can greatly facilitate the identification of components of cellular signalling pathways. In mammalian cells, such screens have been hampered by a lack of suitable tools that can be used on a large scale. We and others have recently developed expression vectors to direct the synthesis of short hairpin RNAs (shRNAs) that act as short interfering RNA (siRNA)-like molecules to stably suppress gene expression. Here we report the construction of a set of retroviral vectors encoding 23,742 distinct shRNAs, which target 7,914 different human genes for suppression. We use this RNAi library in human cells to identify one known and five new modulators of p53-dependent proliferation arrest. Suppression of these genes confers resistance to both p53-dependent and p19ARF-dependent proliferation arrest, and abolishes a DNA-damage-induced G1 cell-cycle arrest. Furthermore, we describe siRNA bar-code screens to rapidly identify individual siRNA vectors associated with a specific phenotype. These new tools will greatly facilitate large-scale loss-of-function genetic screens in mammalian cells.
Oncogene | 2004
Nicola Logan; Laurent Delavaine; Anne Graham; Carmel Reilly; Jon Wilson; Thijn R. Brummelkamp; E. Marielle Hijmans; René Bernards; Nicholas B. La Thangue
The E2F family of transcription factors play an important role in regulating cell cycle progression. We report here the characterization and functional properties of a new member of the human E2F family, referred to as E2F-7. E2F-7 has two separate DNA-binding domains, a feature that distinguishes E2F-7 from other mammalian E2F proteins, but resembling the organization of recently isolated E2F-like proteins from Arabidopsis. E2F-7 binds to DNA independently of a DP partner and delays cell cycle progression. Interestingly, E2F-7 modulates the transcription properties of other E2F proteins. A mutational analysis indicates that the integrity of both DNA-binding domains is required for cell cycle delay and transcriptional modulation. Biochemical results and protein modelling studies suggest that in binding to DNA interactions occur between the two DNA-binding domains, most probably as a homodimer, thereby mimicking the organization of an E2F/DP heterodimer. These structural and functional properties of E2F-7 imply a unique role in regulating cellular proliferation.
Journal of Biological Chemistry | 2006
Sebastian M.B. Nijman; E. Marielle Hijmans; Selma El Messaoudi; Miranda M.W. van Dongen; Claude Sardet; René Bernards
The helix-loop-helix transcription factor TFE3 has been suggested to play a role in the control of cell growth by acting as a binding partner of transcriptional regulators such as E2F3, SMAD3, and LEF-1 (1–4). Furthermore, translocations/TFE3 fusions have been directly implicated in tumorigenesis (5–7). Surprisingly, however, a direct functional role for TFE3 in the regulation of proliferation has not been reported. By screening retroviral cDNA expression libraries to identify cDNAs that confer resistance to a pRB-induced proliferation arrest, we have found that TFE3 overrides a growth arrest in Rat1 cells induced by pRB and its upstream regulator p16INK4A. In addition, TFE3 expression blocks the anti-mitogenic effects of TGF-β in rodent and human cells. We provide data supporting a role for endogenous TFE3 in the direct regulation of CYCLIN E expression in an E2F3-dependent manner. These observations establish TFE3 as a functional regulator of proliferation and offer a potential mechanism for its involvement in cancer.
Oncogene | 2018
Katrien Berns; Joseph J. Caumanns; E. Marielle Hijmans; Annemiek Gennissen; Tesa Severson; Bastiaan Evers; G. Bea A. Wisman; Gert Jan Meersma; Cor Lieftink; Roderick L. Beijersbergen; Hiroaki Itamochi; Ate G.J. van der Zee; Steven de Jong; René Bernards
Current treatment for advanced stage ovarian clear cell cancer is severely hampered by a lack of effective systemic therapy options, leading to a poor outlook for these patients. Sequencing studies revealed that ARID1A is mutated in over 50% of ovarian clear cell carcinomas. To search for a rational approach to target ovarian clear cell cancers with ARID1A mutations, we performed kinome-centered lethality screens in a large panel of ovarian clear cell carcinoma cell lines. Using the largest OCCC cell line panel established to date, we show here that BRD2 inhibition is predominantly lethal in ARID1A mutated ovarian clear cell cancer cells. Importantly, small molecule inhibitors of the BET (bromodomain and extra terminal domain) family of proteins, to which BRD2 belongs, specifically inhibit proliferation of ARID1A mutated cell lines, both in vitro and in ovarian clear cell cancer xenografts and patient-derived xenograft models. BET inhibitors cause a reduction in the expression of multiple SWI/SNF members including ARID1B, providing a potential explanation for the observed lethal interaction with ARID1A loss. Our data indicate that BET inhibition may represent a novel treatment strategy for a subset of ARID1A mutated ovarian clear cell carcinomas.
Clinical Cancer Research | 2018
Joseph J. Caumanns; Katrien Berns; G. Bea A. Wisman; Rudolf S. N. Fehrmann; Tushar Tomar; Harry G. Klip; Gert Jan Meersma; E. Marielle Hijmans; Annemiek Gennissen; Evelien W. Duiker; Desiree Weening; Hiroaki Itamochi; Roelof Jc Kluin; An Reyners; Michael J. Birrer; Helga B. Salvesen; Ignace Vergote; Els Van Nieuwenhuysen; James D. Brenton; Elena Ioana Braicu; Jolanta Kupryjanczyk; Beata Spiewankiewicz; Lorenza Mittempergher; René Bernards; Ate G.J. van der Zee; Steven de Jong
Purpose: Advanced-stage ovarian clear cell carcinoma (OCCC) is unresponsive to conventional platinum-based chemotherapy. Frequent alterations in OCCC include deleterious mutations in the tumor suppressor ARID1A and activating mutations in the PI3K subunit PIK3CA. In this study, we aimed to identify currently unknown mutated kinases in patients with OCCC and test druggability of downstream affected pathways in OCCC models. Experimental Design: In a large set of patients with OCCC (n = 124), the human kinome (518 kinases) and additional cancer-related genes were sequenced, and copy-number alterations were determined. Genetically characterized OCCC cell lines (n = 17) and OCCC patient–derived xenografts (n = 3) were used for drug testing of ERBB tyrosine kinase inhibitors erlotinib and lapatinib, the PARP inhibitor olaparib, and the mTORC1/2 inhibitor AZD8055. Results: We identified several putative driver mutations in kinases at low frequency that were not previously annotated in OCCC. Combining mutations and copy-number alterations, 91% of all tumors are affected in the PI3K/AKT/mTOR pathway, the MAPK pathway, or the ERBB family of receptor tyrosine kinases, and 82% in the DNA repair pathway. Strong p-S6 staining in patients with OCCC suggests high mTORC1/2 activity. We consistently found that the majority of OCCC cell lines are especially sensitive to mTORC1/2 inhibition by AZD8055 and not toward drugs targeting ERBB family of receptor tyrosine kinases or DNA repair signaling. We subsequently demonstrated the efficacy of mTORC1/2 inhibition in all our unique OCCC patient–derived xenograft models. Conclusions: These results propose mTORC1/2 inhibition as an effective treatment strategy in OCCC. Clin Cancer Res; 24(16); 3928–40. ©2018 AACR.
Cancer Research | 2017
Katrien Berns; Joseph J. Caumanns; E. Marielle Hijmans; Annemiek Gennissen; Bastiaan Evers; Bea Wisman; Gert Jan Meersema; Cor Lieftink; Roderick L. Beijersbergen; Hiroaki Itamochi; Ate G.J. van der Zee; Steven de Jong; René Bernards
Introduction: Current treatment for advanced stage ovarian clear cell cancer is severely hampered by a lack of effective systemic therapy options, leading to a poor outlook for these patients. Given that ARID1A is inactivated by mutation in over 50% of ovarian clear cell carcinomas, we pursued an ARID1A synthetic lethal screening strategy to identify druggable targets in OCCC. Experimental procedures: We performed synthetic lethal kinome short hairpin (shRNA) screens in a large panel (n=14) of OCCC cell lines having different ARID1A mutation status. Hit validation was performed with isogenic ARID1A ko cell line pairs and in (patient-derived) xenograft mouse models. Summary of the data: We show here that BRD2 inhibition is synthetic lethal with ARID1A mutation in ovarian clear cell cancer cells. Importantly, inhibiting the BET family of proteins, to which BRD2 belongs, with small molecules specifically inhibits proliferation of ARID1A mutated cell lines both in vitro and in ovarian clear cell cancer xenografts and patient-derived xenograft models. We demonstrate that ARID1A loss leads to upregulation of the WNT ligand WNT10B, possibly causing a WNT dependency in the ARID1A mutant lines. BET inhibitors cause a reduction in WNT10B expression and WNT target genes such as MYC, JUN and WISP1, providing a potential explanation for the observed synthetic lethal interaction with ARID1A loss. Conclusions: Our study uncovered a new synthetic lethal interaction between ARID1A mutation and BET bromodomain inhibition, suggesting a new treatment strategy for ARID1A mutant ovarian clear cell carcinomas. Citation Format: Katrien Berns, Joseph J. Caumanns, E Marielle Hijmans, Annemiek Gennissen, Bastiaan Evers, Bea A. Wisman, Gert Jan Meersema, Cor Lieftink, Roderick L. Beijersbergen, Hiroaki Itamochi, Ate G. van der Zee, Steven de Jong, Rene Bernards. Synthetic lethal interaction between ARID1A mutation and BET bromodomain inhibition in ovarian clear cell carcinoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 3380. doi:10.1158/1538-7445.AM2017-3380
Journal of Biological Chemistry | 2006
Sebastian M.B. Nijman; E. Marielle Hijmans; Selma El Messaoudi; Miranda M.W. van Dongen; Claude Sardet; René Bernards
The helix-loop-helix transcription factor TFE3 has been suggested to play a role in the control of cell growth by acting as a binding partner of transcriptional regulators such as E2F3, SMAD3, and LEF-1 (1–4). Furthermore, translocations/TFE3 fusions have been directly implicated in tumorigenesis (5–7). Surprisingly, however, a direct functional role for TFE3 in the regulation of proliferation has not been reported. By screening retroviral cDNA expression libraries to identify cDNAs that confer resistance to a pRB-induced proliferation arrest, we have found that TFE3 overrides a growth arrest in Rat1 cells induced by pRB and its upstream regulator p16INK4A. In addition, TFE3 expression blocks the anti-mitogenic effects of TGF-β in rodent and human cells. We provide data supporting a role for endogenous TFE3 in the direct regulation of CYCLIN E expression in an E2F3-dependent manner. These observations establish TFE3 as a functional regulator of proliferation and offer a potential mechanism for its involvement in cancer.
Journal of Biological Chemistry | 2006
Sebastian M.B. Nijman; E. Marielle Hijmans; Selma El Messaoudi; Miranda M.W. van Dongen; Claude Sardet; René Bernards
The helix-loop-helix transcription factor TFE3 has been suggested to play a role in the control of cell growth by acting as a binding partner of transcriptional regulators such as E2F3, SMAD3, and LEF-1 (1–4). Furthermore, translocations/TFE3 fusions have been directly implicated in tumorigenesis (5–7). Surprisingly, however, a direct functional role for TFE3 in the regulation of proliferation has not been reported. By screening retroviral cDNA expression libraries to identify cDNAs that confer resistance to a pRB-induced proliferation arrest, we have found that TFE3 overrides a growth arrest in Rat1 cells induced by pRB and its upstream regulator p16INK4A. In addition, TFE3 expression blocks the anti-mitogenic effects of TGF-β in rodent and human cells. We provide data supporting a role for endogenous TFE3 in the direct regulation of CYCLIN E expression in an E2F3-dependent manner. These observations establish TFE3 as a functional regulator of proliferation and offer a potential mechanism for its involvement in cancer.
Cancer Cell | 2007
Katrien Berns; Hugo M. Horlings; Bryan T. Hennessy; Mandy Madiredjo; E. Marielle Hijmans; Karin Beelen; Sabine C. Linn; Ana M. Gonzalez-Angulo; Katherine Stemke-Hale; Michael Hauptmann; Roderick L. Beijersbergen; Gordon B. Mills; Marc J. van de Vijver; René Bernards
Archive | 2006
René Bernards; Menno P. Creyghton; Giulietta Roël; E. Marielle Hijmans; Irma Maurer; Olivier Destrée