Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katrien Berns is active.

Publication


Featured researches published by Katrien Berns.


Nature | 2004

A large-scale RNAi screen in human cells identifies new components of the p53 pathway

Katrien Berns; E. Marielle Hijmans; Jasper Mullenders; Thijn R. Brummelkamp; Arno Velds; Mike Heimerikx; Ron M. Kerkhoven; Mandy Madiredjo; Wouter Nijkamp; Britta Weigelt; Reuven Agami; Wei Ge; Guy Cavet; Peter S. Linsley; Roderick L. Beijersbergen; René Bernards

RNA interference (RNAi) is a powerful new tool with which to perform loss-of-function genetic screens in lower organisms and can greatly facilitate the identification of components of cellular signalling pathways. In mammalian cells, such screens have been hampered by a lack of suitable tools that can be used on a large scale. We and others have recently developed expression vectors to direct the synthesis of short hairpin RNAs (shRNAs) that act as short interfering RNA (siRNA)-like molecules to stably suppress gene expression. Here we report the construction of a set of retroviral vectors encoding 23,742 distinct shRNAs, which target 7,914 different human genes for suppression. We use this RNAi library in human cells to identify one known and five new modulators of p53-dependent proliferation arrest. Suppression of these genes confers resistance to both p53-dependent and p19ARF-dependent proliferation arrest, and abolishes a DNA-damage-induced G1 cell-cycle arrest. Furthermore, we describe siRNA bar-code screens to rapidly identify individual siRNA vectors associated with a specific phenotype. These new tools will greatly facilitate large-scale loss-of-function genetic screens in mammalian cells.


Cancer Research | 2008

An Integrative Genomic and Proteomic Analysis of PIK3CA, PTEN, and AKT Mutations in Breast Cancer

Katherine Stemke-Hale; Ana M. Gonzalez-Angulo; Ana Lluch; Richard M. Neve; Wen Lin Kuo; Michael Davies; Mark S. Carey; Zhi Hu; Yinghui Guan; Aysegul A. Sahin; W. Fraser Symmans; Lajos Pusztai; Laura K. Nolden; Hugo M. Horlings; Katrien Berns; Mien Chie Hung; Marc J. van de Vijver; Vicente Valero; Joe W. Gray; René Bernards; Gordon B. Mills; Bryan T. Hennessy

Phosphatidylinositol 3-kinase (PI3K)/AKT pathway aberrations are common in cancer. By applying mass spectroscopy-based sequencing and reverse-phase protein arrays to 547 human breast cancers and 41 cell lines, we determined the subtype specificity and signaling effects of PIK3CA, AKT, and PTEN mutations and the effects of PIK3CA mutations on responsiveness to PI3K inhibition in vitro and on outcome after adjuvant tamoxifen. PIK3CA mutations were more common in hormone receptor-positive (34.5%) and HER2-positive (22.7%) than in basal-like tumors (8.3%). AKT1 (1.4%) and PTEN (2.3%) mutations were restricted to hormone receptor-positive cancers. Unlike AKT1 mutations that were absent from cell lines, PIK3CA (39%) and PTEN (20%) mutations were more common in cell lines than tumors, suggesting a selection for these but not AKT1 mutations during adaptation to culture. PIK3CA mutations did not have a significant effect on outcome after adjuvant tamoxifen therapy in 157 hormone receptor-positive breast cancer patients. PIK3CA mutations, in comparison with PTEN loss and AKT1 mutations, were associated with significantly less and inconsistent activation of AKT and of downstream PI3K/AKT signaling in tumors and cell lines. PTEN loss and PIK3CA mutation were frequently concordant, suggesting different contributions to pathophysiology. PTEN loss rendered cells significantly more sensitive to growth inhibition by the PI3K inhibitor LY294002 than did PIK3CA mutations. Thus, PI3K pathway aberrations likely play a distinct role in the pathogenesis of different breast cancer subtypes. The specific aberration present may have implications for the selection of PI3K-targeted therapies in hormone receptor-positive breast cancer.


Cell | 2005

A Genetic Screen Identifies PITX1 as a Suppressor of RAS Activity and Tumorigenicity

Ingrid Kolfschoten; Bart van Leeuwen; Katrien Berns; Jasper Mullenders; Roderick L. Beijersbergen; René Bernards; P. Mathijs Voorhoeve; Reuven Agami

Activating mutations of RAS frequently occur in subsets of human cancers, indicating that RAS activation is important for tumorigenesis. However, a large proportion of these cancers still retain wild-type RAS alleles, suggesting that either the RAS pathway is activated in a distinct manner or another pathway is deregulated. To uncover novel tumor-suppressor genes, we screened an RNA-interference library for knockdown constructs that transform human primary cells in the absence of ectopically introduced oncogenic RAS. Here we report the identification of PITX1, whose inhibition induces the RAS pathway and tumorigenicity. Interestingly, we observed low expression of PITX1 in prostate and bladder tumors and in colon cancer cell lines containing wild-type RAS. Restoration of PITX1 in the colon cancer cells inhibited tumorigenicity in a wild-type RAS-dependent manner. Finally, we identified RASAL1, a RAS-GTPase-activating protein, as a transcription target through which PITX1 affects RAS function. Thus, PITX1 suppresses tumorigenicity by downregulating the RAS pathway through RASAL1.


Oncogene | 1997

Repression of c-Myc responsive genes in cycling cells causes G1 arrest through reduction of cyclin E/CDK2 kinase activity

Katrien Berns; E.M. Hijmans; René Bernards

The c-myc gene encodes a sequence-specific DNA binding protein involved in proliferation and oncogenesis. Activation of c-myc expression in quiescent cells is sufficient to mediate cell cycle entry, whereas inhibition of c-myc expression causes cycling cells to withdraw from the cell cycle. To search for components of the cell cycle machinery that are targets of c-Myc, we have made a mutant c-Myc protein, named MadMyc, that actively represses c-myc target genes. Expression of MadMyc in cycling NIH3T3 cells causes a significant accumulation of cells in G1. The MadMyc-induced G1 arrest is rescued by ectopic expression of cyclin E/CDK2 and cyclin D1/CDK4, but not by Cdc25A, a known cell cycle target of c-Myc. The MadMyc G1 arrest does not require the presence of a functional retinoblastoma protein and is associated with a strong reduction in cyclin E/CDK2 kinase activity in arrested cells. MadMyc does not cause alterations in the expression levels of cyclin E, CDK2, p27kip1, cyclin D1 or CDK4 in G1-arrested cells. These data indicate that inhibition of c-Myc activity in exponentially growing cells leads to G1 arrest through loss of cyclin E-associated kinase activity.


Nature Cell Biology | 2005

Akt and 14-3-3η regulate Miz1 to control cell-cycle arrest after DNA damage

Michael Wanzel; Daniela Kleine-Kohlbrecher; Steffi Herold; Andreas K. Hock; Katrien Berns; Jongsun Park; Brian Arthur Hemmings; Martin Eilers

The transcription factor Miz1 is required for DNA-damage-induced cell-cycle arrest. We have now identified 14-3-3η as a gene that inhibits Miz1 function through interaction with its DNA binding domain. Binding of 14-3-3η to Miz1 depends on phosphorylation by Akt and regulates the recovery of cells from arrest after DNA damage. Miz1 has two functions in response to DNA damage: first, it is required for upregulation of a large group of genes, a function that is regulated by c-Myc, but not by 14-3-3η; second, Miz1 represses the expression of many genes in response to DNA damage in an Akt- and 14-3-3η-regulated manner.


The EMBO Journal | 2008

Miz1 and HectH9 regulate the stability of the checkpoint protein, TopBP1

Steffi Herold; Andreas K. Hock; Barbara Herkert; Katrien Berns; Jasper Mullenders; Roderick L. Beijersbergen; René Bernards; Martin Eilers

The Myc‐associated zinc‐finger protein, Miz1, activates transcription of the p21cip1 gene in response to UV irradiation. Miz1 associates with topoisomerase II binding protein1 (TopBP1), an essential activator of the Atr kinase. We show here that Miz1 is required for the recruitment of a fraction of TopBP1 to chromatin, for the protection of TopBP1 from proteasomal degradation and for Atr‐dependent signal transduction. TopBP1 that is not bound to chromatin is degraded by the HectH9 (Mule, ARF‐BP1 and HUWE1) ubiquitin ligase. Myc antagonizes the binding of TopBP1 to Miz1; as a result, expression of Myc leads to dissociation of TopBP1 from chromatin, reduces the amount of total TopBP1 and attenuates Atr‐dependent signal transduction. Our data show that Miz1 and Myc affect the activity of the Atr checkpoint through their effect on TopBP1 chromatin association and stability.


Oncogene | 2000

A genetic screen to identify genes that rescue the slow growth phenotype of c-myc null fibroblasts

Katrien Berns; E.M. Hijmans; Eugene Y. Koh; George Q. Daley; René Bernards

The c-myc gene is frequently over-expressed in human cancers and is involved in regulation of proliferation, differentiation and apoptosis. c-Myc is a transcription factor that acts primarily by regulating the expression of other genes. However, it has been very difficult to identify bona fide c-Myc target genes that explain its diverse biological activities. The recent generation of c-myc deficient Rat1A fibroblasts with a profound and stable growth defect provides a new system to search for genes that can substitute for c-myc in proliferation. In this study, we have attempted to identify genes that rescue the slow growth phenotype of c-myc null cells through introduction of a series of potent cell cycle regulatory genes and several retroviral cDNA expression libraries. None of the candidate genes tested, including SV40 T-antigen and adenovirus E1A, caused reversal of the c-myc null growth defect. Furthermore, extensive screens with high-complexity retroviral cDNA libraries from three different tissue sources revealed that only c-myc and N-myc rescued the c-myc null slow-growth phenotype. Our data support the notion that there are no functional equivalents of the myc family of proto-oncogenes and also suggest that there are no c-Myc-activated genes that alone can substitute for c-Myc in control of cell proliferation.


Oncogene | 2000

p27kip1-independent cell cycle regulation by MYC

Katrien Berns; Carla P. Martins; Jan-Hermen Dannenberg; Anton Berns; Hein te Riele; René Bernards

MYC transcription factors are potent stimulators of cell proliferation. It has been suggested that the CDK-inhibitor p27kip1 is a critical G1 phase cell cycle target of c-MYC. We show here that mouse embryo fibroblasts deficient for both p27kip1 and the related p21cip1 are still responsive to stimulation by c-MYC and can be arrested in G1 by a dominant negative mutant of c-MYC. This growth arrest can be overruled by ectopic expression of E2F or adenovirus E1A, but not by a mutant of E1A defective for binding to retinoblastoma family proteins. We show that fibroblasts with a genetic disruption of all three retinoblastoma family members (pRb, p107 and p130) are unresponsive to a dominant negative c-MYC mutant. These data indicate that p27kip1 is not the only rate limiting cell cycle target of c-MYC and suggest that regulation of E2F is also essential for c-MYCs mitogenic activity.


Drug Resistance Updates | 2012

Understanding resistance to targeted cancer drugs through loss of function genetic screens

Katrien Berns; René Bernards

Comprehensive analysis of cancer genomes has provided important insights in the critical alterations that confer proliferation and survival advantage to the tumor, so-called driver mutations. Tumors harboring these genetic changes frequently exhibit striking sensitivities to inhibition of these oncogenic driver pathways, a principle referred to as oncogene addiction. Substantial progress has been made in the development of drugs that specifically target components of the pathways that are associated with these driver mutations. This has enabled the first steps in a shift from the use of cytotoxic drugs to highly selective targeted therapeutic agents for the treatment of cancer. Unfortunately, despite the expanding development of targeted anti-cancer strategies, treatment failure due to primary or acquired resistance is still an almost inevitable outcome in most advanced human cancers. Understanding drug resistance mechanisms will help design more efficient combination treatment strategies that help block resistance mechanisms before they become clinically manifest. In this review, we discuss how RNA interference functional genetic screens can be used to identify clinically relevant mechanisms of drug resistance and how this technology can be used to develop effective combination therapies.


Oncotarget | 2016

An integrated genomic approach identifies that the PI3K/AKT/FOXO pathway is involved in breast cancer tumor initiation

Linda Smit; Katrien Berns; Katherine Spence; W David Ryder; Nikolajs Zeps; Mandy Madiredjo; Roderick L. Beijersbergen; René Bernards; Robert B. Clarke

Therapy resistance is one of the major impediments to successful cancer treatment. In breast cancer, a small subpopulation of cells with stem cell features, named breast cancer stem cells (BCSC), is responsible for metastasis and recurrence of the tumor. BCSC have the unique ability to grow under non-adherent conditions in “mammospheres”. To prevent breast cancer recurrence and metastasis it will be crucial to eradicate BCSC. We used shRNA genetic screening to identify genes that upon knockdown enhance mammosphere formation in breast cancer cells. By integration of these results with gene expression profiles of mammospheres and NOTCH-activated cells, we identified FOXO3A. Modulation of FOXO3A activity results in a change in mammosphere formation, expression of mammary stem cell markers and breast cancer initiating potential. Importantly, lack of FOXO3A expression in breast cancer patients is associated with increased recurrence rate. Our findings provide evidence for a role for FOXO3A downstream of NOTCH and AKT that may have implications for therapies targeting BCSCs.

Collaboration


Dive into the Katrien Berns's collaboration.

Top Co-Authors

Avatar

René Bernards

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph J. Caumanns

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Ate G.J. van der Zee

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

E. Marielle Hijmans

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Jasper Mullenders

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Steven de Jong

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

G. Bea A. Wisman

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Mandy Madiredjo

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Annemiek Gennissen

Netherlands Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge