E. Mason
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Mason.
Astronomy and Astrophysics | 2005
G. A. Wade; D. Drouin; S. Bagnulo; J. D. Landstreet; E. Mason; J. Silvester; E. Alecian; T. Böhm; J.-C. Bouret; C. Catala; J.-F. Donati
We are investigating the magnetic characteristics of pre-main sequence Herbig Ae/Be stars, with the aim of (1) understanding the origin and evolution of magnetism in intermediate-mass stars, and (2) exploring the influence of magnetic fields on accretion, rotation and mass-loss at the early stages of evolution of A, B and O stars. We have begun by conducting 2 large surveys of Herbig Ae/Be stars, searching for direct evidence of photospheric magnetic fields via the longitudinal Zeeman effect. From observations obtained using FORS1 at the ESO-VLT and ESPaDOnS at the Canada-France-Hawaii Telescope, we report the confirmed detection of magnetic fields in 4 pre-main sequence A- and B-type stars, and the apparent (but as yet unconfirmed) detection of fields in 2 other such stars. We do not confirm the detection of magnetic fields in several stars reported by other authors to be magnetic: HD 139614, HD 144432 or HD 31649. One of the most evolved stars in the detected sample, HD 72106A, shows clear evidence of strong photospheric chemical peculiarity, whereas many of the other (less evolved) stars do not. The magnetic fields that we detect appear to have surface intensities of order 1 kG, seem to be structured on global scales, and appear in about 10% of the stars studied. Based on these properties, these magnetic stars appear to be pre-main sequence progenitors of the magnetic Ap/Bp stars.
Monthly Notices of the Royal Astronomical Society | 2010
P. Casella; Thomas J. Maccarone; K. O'Brien; R. P. Fender; D. M. Russell; M. van der Klis; Asaf Pe'er; Dipankar Maitra; D. Altamirano; T. Belloni; G. Kanbach; M. Klein-Wolt; E. Mason; Paolo Soleri; Alexander Stefanescu; K. Wiersema; Rudy Wijnands
We present the discovery of fast infrared/X-ray correlated variability in the black hole transient GX 339-4. The source was observed with subsecond time resolution simultaneously with Very Large Telescope/Infrared Spectrometer And Array Camera and Rossi X-ray Timing Explorer/Proportional Counter Array in 2008 August, during its persistent low-flux highly variable hard state. The data show a strong correlated variability, with the infrared emission lagging the X-ray emission by 100 ms. The short time delay and the nearly symmetric cross-correlation function, together with the measured brightness temperature of similar to 2.5 x 10(6) K, indicate that the bright and highly variable infrared emission most likely comes from a jet near the black hole. Under standard assumptions about jet physics, the measured time delay can provide us a lower limit of Gamma > 2 for the Lorentz factor of the jet. This suggests that jets from stellar-mass black holes are at least mildly relativistic near their launching region. We discuss implications for future applications of this technique.
Proceedings of SPIE | 2010
Andrea Modigliani; Paolo Goldoni; Frederic Royer; R. Haigron; Laurent Guglielmi; Patrick Francois; M. Horrobin; Paul Bristow; J. Vernet; S. Moehler; Florian Kerber; Pascal Ballester; E. Mason; L. Christensen
The X-shooter data reduction pipeline, as part of the ESO-VLT Data Flow System, provides recipes for Paranal Science Operations, and for Data Product and Quality Control Operations at Garching headquarters. At Paranal, it is used for the quick-look data evaluation. The pipeline recipes can be executed either with EsoRex at the command line level or through the Gasgano graphical user interface. The recipes are implemented with the ESO Common Pipeline Library (CPL). X-shooter is the first of the second generation of VLT instruments. It makes possible to collect in one shot the full spectrum of the target from 300 to 2500 nm, subdivided in three arms optimised for UVB, VIS and NIR ranges, with an efficiency between 15% and 35% including the telescope and the atmosphere, and a spectral resolution varying between 3000 and 17,000. It allows observations in stare, offset modes, using the slit or an IFU, and observing sequences nodding the target along the slit. Data reduction can be performed either with a classical approach, by determining the spectral format via 2D-polynomial transformations, or with the help of a dedicated instrument physical model to gain insight on the instrument and allowing a constrained solution that depends on a few parameters with a physical meaning. In the present paper we describe the steps of data reduction necessary to fully reduce science observations in the different modes with examples on typical data calibrations and observations sequences.
Astronomy and Astrophysics | 2011
Ferdinando Patat; N. N. Chugai; Ph. Podsiadlowski; E. Mason; C. Melo; Luca Pasquini
Aims. Recurrent nova systems like RS Oph have been proposed as a possible channel for type Ia supernova (SN) explosions based on the high mass of the accreting white dwarf. Additional support for this hypothesis has recently been provided by the detection of circumstellar material around SN 2006X and SN 2007le, showing a structure compatible with that expected for recurrent nova outbursts. We investigate the circumstellar environment of RS Oph and its structure with the aim of establishing a firmer and independent link between this class of objects and type Ia SN progenitors. Methods. We study the time evolution of Ca ii ,N ai ,a nd Ki absorption features in RS Oph before, during, and after the last outburst, using multi-epoch, high-resolution spectroscopy and applying the same method as was adopted for SN 2006X and SN 2007le. Results. A number of components are detected , that are blue-shifted with respect to the systemic velocity of RS Oph. In particular, one feature strongly weakens in the first two weeks after the outburst, at the same time that the very narrow P-Cyg profiles disappear, which are overimposed on the much wider nova emission lines of H, He, Fe ii, and other elements. Conclusions. We interpret this as the signature of density enhancements in the circumstellar material, suggesting that the recurrent eruptions might indeed create complex structures within the material lost by the donor star. This establishes a strong link between RS Oph and the progenitor system of the type Ia SN 2006X, for which similar features have been detected.
Astronomy and Astrophysics | 2010
N. Masetti; Pietro Parisi; Eliana Palazzi; E. Jiménez-Bailón; V. Chavushyan; L. Bassani; A. Bazzano; A. J. Bird; A. J. Dean; P. A. Charles; Gaspar Galaz; R. Landi; A. Malizia; E. Mason; V. A. McBride; D. Minniti; L. Morelli; F. Schiavone; John B. Stephen; P. Ubertini
(abridged) Hard X-ray surveys performed by the INTEGRAL satellite have discovered a conspicuous fraction (up to 30%) of unidentified objects among the detected sources. Here we continue our identification program by selecting probable optical candidates using positional cross-correlation with soft X-ray, radio, and/or optical archives, and performing optical spectroscopy on them. As a result, we identified or more accurately characterized 44 counterparts of INTEGRAL sources: 32 active galactic nuclei, with redshift 0.019 < z < 0.6058, 6 cataclysmic variables (CVs), 5 high-mass X-ray binaries (2 of which in the Small Magellanic Cloud), and 1 low-mass X-ray binary. This was achieved by using 7 telescopes of various sizes and archival data from two online spectroscopic surveys. The main physical parameters of these hard X-ray sources were also determined using the available multiwavelength information. AGNs are the most abundant population among hard X-ray objects, and our results confirm this tendency when optical spectroscopy is used as an identification tool. The deeper sensitivity of recent INTEGRAL surveys enables one to begin detecting hard X-ray emission above 20 keV from sources such as LINER-type AGNs and non-magnetic CVs.
Astronomy and Astrophysics | 2010
E. Mason; Marcos P. Diaz; Robert E. Williams; George W. Preston; Thomas Bensby
Aims. Nova Scorpii 2008 was the target of our Director Discretionary Time proposal at VLT+UVES in order to study the evolution, origin and abundances of the heavy-element absorption system recently discovered in 80% of classical novae in outburst. Methods. The early decline of nova Scorpii 2008 was monitored with high resolution echelle spectroscopy at 5 different epochs. The analysis of the absorption and the emission lines show many unusual characteristics. Results. Nova Scorpii 2008 is confirmed to differ from a common classical nova as well as a symbiotic recurrent nova, and it shows characteristics which are common to the so called, yet debated, red-novae. The origin of this new nova remains uncertain.
Monthly Notices of the Royal Astronomical Society | 2000
E. Mason; Warren Skidmore; Steve B. Howell; David R. Ciardi; S. P. Littlefair; V. S. Dhillon
We present our second paper describing multiwaveband time-resolved spectroscopy of WZ Sge. We analyse the evolution of both optical and IR emission lines throughout the orbital period and find evidence, in the Balmer lines, for an optically thin accretion disc and an optically thick hotspot. Optical and IR emission lines are used to compute radial velocity curves. Fits to our radial velocity measurements give an internally inconsistent set of values for K1, γ and the phase of red-to-blue crossing. We present a probable explanation for these discrepancies, and provide evidence for similar behaviour in other short orbital period dwarf novae. Selected optical and IR spectra are measured to determine the accretion disc radii. Values for the disc radii are found to be strongly dependent on the assumed WD mass and binary orbital inclination. However, the separation of the peaks in the optical emission line (i.e., an indication of the outer disc radius) has been found to be constant during all phases of the supercycle period over the last 40 years.
Astronomy and Astrophysics | 2009
N. Masetti; Pietro Parisi; Eliana Palazzi; E. Jiménez-Bailón; L. Morelli; V. Chavushyan; E. Mason; V. A. McBride; L. Bassani; A. Bazzano; A. J. Bird; A. J. Dean; Gaspar Galaz; N. Gehrels; R. Landi; A. Malizia; D. Minniti; F. Schiavone; John B. Stephen; P. Ubertini
Within the framework of our program of assessment of the nature of unidentified or poorly known INTEGRAL sources, we present here spectroscopy of optical objects, selected through positional cross-correlation with soft X-ray detections (afforded with satellites such as Swift , ROSAT , Chandra and/or XMM-Newton ) as putative counterparts of hard X-ray sources detected with the IBIS instrument onboard INTEGRAL . Using 6 telescopes of various sizes and archival data from two on-line spectroscopic surveys we are able to identify, either for the first time or independent of other groups, the nature of 20 INTEGRAL hard X-ray sources. Our results indicate that: 11 of these objects are active galactic nuclei (AGNs) at redshifts between 0.014 and 0.978, 7 of which display broad emission lines, 2 show narrow emission lines only, and 2 have unremarkable or no emission lines (thus are likely Compton thick AGNs); 5 are cataclysmic variables (CVs), 4 of which are (possibly magnetic) dwarf novae and one is a symbiotic star; and 4 are Galactic X-ray binaries (3 with high-mass companions and one with a low-mass secondary). It is thus again found that the majority of these sources are AGNs or magnetic CVs, confirming our previous findings. When possible, the main physical parameters for these hard X-ray sources are also computed using the multiwavelength information available in the literature. These identifications support the importance of INTEGRAL in the study of the hard X-ray spectrum of all classes of X-ray emitting objects, and the effectiveness of a strategy of multi-catalogue cross-correlation plus optical spectroscopy to securely pinpoint the actual nature of unidentified hard X-ray sources.
The Astrophysical Journal | 2008
Robert E. Williams; E. Mason; Massimo Della Valle; Alessandro Ederoclite
A high-resolution spectroscopic survey of post-outburst novae reveals short-lived heavy element absorption systems in a majority of novae near maximum light, having expansion velocities of 400-1000 km s−1 and velocity dispersions between 35 and 350 km s−1. A majority of systems are accelerated outward, and they all progressively weaken and disappear over timescales of weeks. A few of the systems having narrow, deeper absorption reveal a rich spectrum of singly ionized Sc, Ti, V, Cr, Fe, Sr, Y, Zr, and Ba lines. Analysis of the richest such system, in LMC 2005, shows the excitation temperature to be 104 K and elements lighter than Fe to have abundance enhancements over solar values by up to an order of magnitude. The gas causing the absorption systems must be circumbinary and its origin is most likely mass ejection from the secondary star. The absorbing gas exists before the outburst and may represent episodic mass transfer events from the secondary star that initiate the nova outburst(s). If SNe Ia originate in single degenerate binaries, such absorption systems could be detectable before maximum light.
Monthly Notices of the Royal Astronomical Society | 2014
D. de Martino; J. Casares; E. Mason; D. Buckley; Marissa Kotze; J.-M. Bonnet-Bidaud; M. Mouchet; Rocco Coppejans; Amanda A. S. Gulbis
The peculiar low mass X-ray binary XSSJ12270-4859, associated with the Fermi/LAT source 2FGLJ1227.7-4853, was in a X-ray, gamma-ray and optical low-luminosity persistent state for about a decade until the end of 2012, when it has entered into the dimmest state ever observed. The nature of the compact object has been controversial until the detection of a 1.69ms radio pulsar early 2014. We present optical spectroscopy and optical/near-IR photometry during the previous brighter and in the recent faint states. We determine the first spectroscopic orbital ephemeris and an accurate orbital period of 6.91246(5)h. We infer a mid G-type donor star and a distance d= 1.8-2.0kpc. The donor spectral type changes from G5V to F5V between inferior and superior conjunction, a signature of strong irradiation effects. We infer a binary inclination 45 o . i . 65 o and a highly undermassive donor, M2 � 0.06 0.12M⊙ for a neutron star mass in the range 1.4-3M⊙. Thus this binary joins as the seventh member the group of ”redbacks”. In the high state, the emission lines reveal the presence of an accretion disc. They tend to vanish at the donor star superior conjunction, where also flares are preferentially observed together with the occurrence of random dips. This behaviour could be related to the propeller mechanism of the neutron star recently proposed to be acting in this system during the high state. In the low state, the emission lines are absent at all orbital phases indicating that accretion has completely switched-off and that XSSJ12270-4859 has transited from an accretion-powered to a rotation-powered phase.