Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Michael Gertz is active.

Publication


Featured researches published by E. Michael Gertz.


FEBS Journal | 2005

Protein Database Searches Using Compositionally Adjusted Substitution Matrices

Stephen F. Altschul; John C. Wootton; E. Michael Gertz; Richa Agarwala; Aleksandr Morgulis; Alejandro A. Schäffer; Yi-Kuo Yu

Almost all protein database search methods use amino acid substitution matrices for scoring, optimizing, and assessing the statistical significance of sequence alignments. Much care and effort has therefore gone into constructing substitution matrices, and the quality of search results can depend strongly upon the choice of the proper matrix. A long‐standing problem has been the comparison of sequences with biased amino acid compositions, for which standard substitution matrices are not optimal. To address this problem, we have recently developed a general procedure for transforming a standard matrix into one appropriate for the comparison of two sequences with arbitrary, and possibly differing compositions. Such adjusted matrices yield, on average, improved alignments and alignment scores when applied to the comparison of proteins with markedly biased compositions.


American Journal of Human Genetics | 2012

Deleterious Mutations in LRBA Are Associated with a Syndrome of Immune Deficiency and Autoimmunity

Gabriela Lopez-Herrera; Giacomo Tampella; Qiang Pan-Hammarström; Peer Herholz; Claudia M. Trujillo-Vargas; Kanchan Phadwal; Anna Katharina Simon; Michel Moutschen; Amos Etzioni; Adi Mory; Izhak Srugo; Doron Melamed; Kjell Hultenby; Chonghai Liu; Manuela Baronio; Massimiliano Vitali; Pierre Philippet; Vinciane Dideberg; Asghar Aghamohammadi; Nima Rezaei; Victoria Enright; Likun Du; Ulrich Salzer; Hermann Eibel; Dietmar Pfeifer; Hendrik Veelken; Hans J. Stauss; Vassilios Lougaris; Alessandro Plebani; E. Michael Gertz

Most autosomal genetic causes of childhood-onset hypogammaglobulinemia are currently not well understood. Most affected individuals are simplex cases, but both autosomal-dominant and autosomal-recessive inheritance have been described. We performed genetic linkage analysis in consanguineous families affected by hypogammaglobulinemia. Four consanguineous families with childhood-onset humoral immune deficiency and features of autoimmunity shared genotype evidence for a linkage interval on chromosome 4q. Sequencing of positional candidate genes revealed that in each family, affected individuals had a distinct homozygous mutation in LRBA (lipopolysaccharide responsive beige-like anchor protein). All LRBA mutations segregated with the disease because homozygous individuals showed hypogammaglobulinemia and autoimmunity, whereas heterozygous individuals were healthy. These mutations were absent in healthy controls. Individuals with homozygous LRBA mutations had no LRBA, had disturbed B cell development, defective in vitro B cell activation, plasmablast formation, and immunoglobulin secretion, and had low proliferative responses. We conclude that mutations in LRBA cause an immune deficiency characterized by defects in B cell activation and autophagy and by susceptibility to apoptosis, all of which are associated with a clinical phenotype of hypogammaglobulinemia and autoimmunity.


Blood | 2009

Relevance of biallelic versus monoallelic TNFRSF13B mutations in distinguishing disease-causing from risk-increasing TNFRSF13B variants in antibody deficiency syndromes

Ulrich Salzer; Chiara Bacchelli; Sylvie Buckridge; Qiang Pan-Hammarström; Stephanie Jennings; Vassilis Lougaris; Astrid Bergbreiter; Tina Hagena; Jennifer Birmelin; Alessandro Plebani; A. David B. Webster; H. H. Peter; Daniel Suez; Helen Chapel; Andrew McLean-Tooke; Gavin Spickett; Stephanie Anover-Sombke; Hans D. Ochs; Simon Urschel; Bernd H. Belohradsky; Sanja Ugrinovic; Dinakantha Kumararatne; Tatiana C. Lawrence; Are Martin Holm; José Luis Franco; Ilka Schulze; Pascal Schneider; E. Michael Gertz; Alejandro A. Schäffer; Lennart Hammarström

TNFRSF13B encodes transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), a B cell- specific tumor necrosis factor (TNF) receptor superfamily member. Both biallelic and monoallelic TNFRSF13B mutations were identified in patients with common variable immunodeficiency disorders. The genetic complexity and variable clinical presentation of TACI deficiency prompted us to evaluate the genetic, immunologic, and clinical condition in 50 individuals with TNFRSF13B alterations, following screening of 564 unrelated patients with hypogammaglobulinemia. We identified 13 new sequence variants. The most frequent TNFRSF13B variants (C104R and A181E; n=39; 6.9%) were also present in a heterozygous state in 2% of 675 controls. All patients with biallelic mutations had hypogammaglobulinemia and nearly all showed impaired binding to a proliferation-inducing ligand (APRIL). However, the majority (n=41; 82%) of the pa-tients carried monoallelic changes in TNFRSF13B. Presence of a heterozygous mutation was associated with antibody deficiency (P< .001, relative risk 3.6). Heterozygosity for the most common mutation, C104R, was associated with disease (P< .001, relative risk 4.2). Furthermore, heterozygosity for C104R was associated with low numbers of IgD(-)CD27(+) B cells (P= .019), benign lymphoproliferation (P< .001), and autoimmune complications (P= .001). These associations indicate that C104R heterozygosity increases the risk for common variable immunodeficiency disorders and influences clinical presentation.


BMC Biology | 2006

Composition-based statistics and translated nucleotide searches: Improving the TBLASTN module of BLAST

E. Michael Gertz; Yi-Kuo Yu; Richa Agarwala; Alejandro A. Schäffer; Stephen F. Altschul

BackgroundTBLASTN is a mode of operation for BLAST that aligns protein sequences to a nucleotide database translated in all six frames. We present the first description of the modern implementation of TBLASTN, focusing on new techniques that were used to implement composition-based statistics for translated nucleotide searches. Composition-based statistics use the composition of the sequences being aligned to generate more accurate E-values, which allows for a more accurate distinction between true and false matches. Until recently, composition-based statistics were available only for protein-protein searches. They are now available as a command line option for recent versions of TBLASTN and as an option for TBLASTN on the NCBI BLAST web server.ResultsWe evaluate the statistical and retrieval accuracy of the E-values reported by a baseline version of TBLASTN and by two variants that use different types of composition-based statistics. To test the statistical accuracy of TBLASTN, we ran 1000 searches using scrambled proteins from the mouse genome and a database of human chromosomes. To test retrieval accuracy, we modernize and adapt to translated searches a test set previously used to evaluate the retrieval accuracy of protein-protein searches. We show that composition-based statistics greatly improve the statistical accuracy of TBLASTN, at a small cost to the retrieval accuracy.ConclusionTBLASTN is widely used, as it is common to wish to compare proteins to chromosomes or to libraries of mRNAs. Composition-based statistics improve the statistical accuracy, and therefore the reliability, of TBLASTN results. The algorithms used by TBLASTN are not widely known, and some of the most important are reported here. The data used to test TBLASTN are available for download and may be useful in other studies of translated search algorithms.


The Journal of Allergy and Clinical Immunology | 2010

Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome

Cristina Woellner; E. Michael Gertz; Alejandro A. Schäffer; Macarena Lagos; Mario Perro; Erik Glocker; Maria Cristina Pietrogrande; Fausto Cossu; José Luis Franco; Nuria Matamoros; Barbara Pietrucha; Edyta Heropolitańska-Pliszka; Mehdi Yeganeh; Mostafa Moin; Teresa Espanol; Stephan Ehl; Andrew R. Gennery; Mario Abinun; Anna Bręborowicz; Tim Niehues; Sara Sebnem Kilic; Anne K. Junker; Stuart E. Turvey; Alessandro Plebani; Berta Sanchez; Ben Zion Garty; Claudio Pignata; Caterina Cancrini; Jiri Litzman; Ozden Sanal

BACKGROUND The hyper-IgE syndrome (HIES) is a primary immunodeficiency characterized by infections of the lung and skin, elevated serum IgE, and involvement of the soft and bony tissues. Recently, HIES has been associated with heterozygous dominant-negative mutations in the signal transducer and activator of transcription 3 (STAT3) and severe reductions of T(H)17 cells. OBJECTIVE To determine whether there is a correlation between the genotype and the phenotype of patients with HIES and to establish diagnostic criteria to distinguish between STAT3 mutated and STAT3 wild-type patients. METHODS We collected clinical data, determined T(H)17 cell numbers, and sequenced STAT3 in 100 patients with a strong clinical suspicion of HIES and serum IgE >1000 IU/mL. We explored diagnostic criteria by using a machine-learning approach to identify which features best predict a STAT3 mutation. RESULTS In 64 patients, we identified 31 different STAT3 mutations, 18 of which were novel. These included mutations at splice sites and outside the previously implicated DNA-binding and Src homology 2 domains. A combination of 5 clinical features predicted STAT3 mutations with 85% accuracy. T(H)17 cells were profoundly reduced in patients harboring STAT3 mutations, whereas 10 of 13 patients without mutations had low (<1%) T(H)17 cells but were distinct by markedly reduced IFN-gamma-producing CD4(+)T cells. CONCLUSION We propose the following diagnostic guidelines for STAT3-deficient HIES. Possible: IgE >1000IU/mL plus a weighted score of clinical features >30 based on recurrent pneumonia, newborn rash, pathologic bone fractures, characteristic face, and high palate. Probable: These characteristics plus lack of T(H)17 cells or a family history for definitive HIES. Definitive: These characteristics plus a dominant-negative heterozygous mutation in STAT3.


Bioinformatics | 2006

WindowMasker: window-based masker for sequenced genomes

Aleksandr Morgulis; E. Michael Gertz; Alejandro A. Schäffer; Richa Agarwala

MOTIVATION Matches to repetitive sequences are usually undesirable in the output of DNA database searches. Repetitive sequences need not be matched to a query, if they can be masked in the database. RepeatMasker/Maskeraid (RM), currently the most widely used software for DNA sequence masking, is slow and requires a library of repetitive template sequences, such as a manually curated RepBase library, that may not exist for newly sequenced genomes. RESULTS We have developed a software tool called WindowMasker (WM) that identifies and masks highly repetitive DNA sequences in a genome, using only the sequence of the genome itself. WM is orders of magnitude faster than RM because WM uses a few linear-time scans of the genome sequence, rather than local alignment methods that compare each library sequence with each piece of the genome. We validate WM by comparing BLAST outputs from large sets of queries applied to two versions of the same genome, one masked by WM, and the other masked by RM. Even for genomes such as the human genome, where a good RepBase library is available, searching the database as masked with WM yields more matches that are apparently non-repetitive and fewer matches to repetitive sequences. We show that these results hold for transcribed regions as well. WM also performs well on genomes for which much of the sequence was in draft form at the time of the analysis. AVAILABILITY WM is included in the NCBI C++ toolkit. The source code for the entire toolkit is available at ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/. Once the toolkit source is unpacked, the instructions for building WindowMasker application in the UNIX environment can be found in file src/app/winmasker/README.build. SUPPLEMENTARY INFORMATION Supplementary data are available at ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/windowmasker/windowmasker_suppl.pdf


Journal of Experimental Medicine | 2013

Loss-of-function mutations in the IL-21 receptor gene cause a primary immunodeficiency syndrome

Daniel Kotlarz; Natalia Ziętara; Gulbu Uzel; Thomas Weidemann; Christian Braun; Jana Diestelhorst; Peter Krawitz; Peter N. Robinson; Jochen Hecht; Jacek Puchałka; E. Michael Gertz; Alejandro A. Schäffer; Monica G. Lawrence; Lela Kardava; Dietmar Pfeifer; Ulrich Baumann; Eva-Doreen Pfister; Eric P. Hanson; Axel Schambach; Hans Kreipe; Susan Moir; Joshua D. Milner; Petra Schwille; Stefan Mundlos; Christoph Klein

A primary immunodeficiency syndrome caused by loss-of-function mutations in the IL-21 receptor exhibits impaired B, T, and NK cell function.


Nucleic Acids Research | 2009

PSI-BLAST pseudocounts and the minimum description length principle

Stephen F. Altschul; E. Michael Gertz; Richa Agarwala; Alejandro A. Schäffer; Yi-Kuo Yu

Position specific score matrices (PSSMs) are derived from multiple sequence alignments to aid in the recognition of distant protein sequence relationships. The PSI-BLAST protein database search program derives the column scores of its PSSMs with the aid of pseudocounts, added to the observed amino acid counts in a multiple alignment column. In the absence of theory, the number of pseudocounts used has been a completely empirical parameter. This article argues that the minimum description length principle can motivate the choice of this parameter. Specifically, for realistic alignments, the principle supports the practice of using a number of pseudocounts essentially independent of alignment size. However, it also implies that more highly conserved columns should use fewer pseudocounts, increasing the inter-column contrast of the implied PSSMs. A new method for calculating pseudocounts that significantly improves PSI-BLASTs; retrieval accuracy is now employed by default.


Nucleic Acids Research | 2006

Retrieval accuracy, statistical significance and compositional similarity in protein sequence database searches

Yi-Kuo Yu; E. Michael Gertz; Richa Agarwala; Alejandro A. Schäffer; Stephen F. Altschul

Protein sequence database search programs may be evaluated both for their retrieval accuracy—the ability to separate meaningful from chance similarities—and for the accuracy of their statistical assessments of reported alignments. However, methods for improving statistical accuracy can degrade retrieval accuracy by discarding compositional evidence of sequence relatedness. This evidence may be preserved by combining essentially independent measures of alignment and compositional similarity into a unified measure of sequence similarity. A version of the BLAST protein database search program, modified to employ this new measure, outperforms the baseline program in both retrieval and statistical accuracy on ASTRAL, a SCOP-based test set.


Nature Genetics | 2014

JAGN1 deficiency causes aberrant myeloid cell homeostasis and congenital neutropenia.

Kaan Boztug; Päivi M Järvinen; Elisabeth Salzer; Tomas Racek; Sebastian Mönch; Wojciech Garncarz; E. Michael Gertz; Alejandro A. Schäffer; Aristotelis Antonopoulos; Stuart M. Haslam; Lena Schieck; Jacek Puchałka; Jana Diestelhorst; Giridharan Appaswamy; Brigitte Lescoeur; Roberto Giambruno; Johannes W. Bigenzahn; Ulrich Elling; Dietmar Pfeifer; Cecilia Domínguez Conde; Michael H. Albert; Karl Welte; Gudrun Brandes; Roya Sherkat; Jutte van der Werff ten Bosch; Nima Rezaei; Amos Etzioni; Christine Bellanné-Chantelot; Giulio Superti-Furga; Josef M. Penninger

The analysis of individuals with severe congenital neutropenia (SCN) may shed light on the delicate balance of factors controlling the differentiation, maintenance and decay of neutrophils. We identify 9 distinct homozygous mutations in the JAGN1 gene encoding Jagunal homolog 1 in 14 individuals with SCN. JAGN1-mutant granulocytes are characterized by ultrastructural defects, a paucity of granules, aberrant N-glycosylation of multiple proteins and increased incidence of apoptosis. JAGN1 participates in the secretory pathway and is required for granulocyte colony-stimulating factor receptor–mediated signaling. JAGN1 emerges as a factor that is necessary in the differentiation and survival of neutrophils.

Collaboration


Dive into the E. Michael Gertz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richa Agarwala

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thomas Ried

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Russell Schwartz

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen F. Altschul

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yi-Kuo Yu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge