Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Morelli is active.

Publication


Featured researches published by E. Morelli.


Astronomy and Astrophysics | 2003

JEM-X: The X-ray monitor aboard INTEGRAL ?

Niels Lund; C. Budtz-Jørgensen; N. J. Westergaard; S. Brandt; I. L. Rasmussen; Allan Hornstrup; C. A. Oxborrow; J. Chenevez; P. A. Jensen; S. Laursen; K. H. Andersen; P. B. Mogensen; K. Omø; S. M. Pedersen; Josef Polny; H. Andersson; Tor Andersson; Veikko J. Kamarainen; O. Vilhu; J. Huovelin; S. Maisala; M. Morawski; G. Juchnikowski; Enrico Costa; M. Feroci; A. Rubini; Massimo Rapisarda; E. Morelli; V. Carassiti; F. Frontera

The JEM-X monitor provides X-ray spectra and imaging with arcminute angular resolution in the 3 to 35 keV band. The good angular resolution and the low energy response of JEM-X plays an important role in the identification of gamma ray sources and in the analysis and scientific interpretation of the combined X-ray and gamma ray data. JEM-X is a coded aperture instrument consisting of two identical, coaligned telescopes. Each of the detectors has a sensitive area of 500 cm 2 , and views the sky through its own coded aperture mask. The two coded masks are inverted with respect to each other and provides an angular resolution of 3 0 across an eective field of view of about 10 diameter.


Science | 2011

Discovery of powerful gamma-ray flares from the Crab Nebula.

A. Bulgarelli; V. Vittorini; A. Pellizzoni; E. Striani; Patrizia A. Caraveo; Martin C. Weisskopf; Allyn F. Tennant; G. Pucella; Alessio Trois; Enrico Costa; C. Pittori; F. Verrecchia; E. Del Monte; R. Campana; M. Pilia; A. De Luca; I. Donnarumma; D. Horns; C. Ferrigno; C. O. Heinke; Massimo Trifoglio; F. Gianotti; S. Vercellone; A. Argan; G. Barbiellini; Paolo Walter Cattaneo; Andrew W. Chen; T. Contessi; F. D’Ammando; G. DeParis

Gamma-ray observations of the Crab Nebula by two different space telescopes challenge particle acceleration theory. The well-known Crab Nebula is at the center of the SN1054 supernova remnant. It consists of a rotationally powered pulsar interacting with a surrounding nebula through a relativistic particle wind. The emissions originating from the pulsar and nebula have been considered to be essentially stable. Here, we report the detection of strong gamma-ray (100 mega–electron volts to 10 giga–electron volts) flares observed by the AGILE satellite in September 2010 and October 2007. In both cases, the total gamma-ray flux increased by a factor of three compared with the non-flaring flux. The flare luminosity and short time scale favor an origin near the pulsar, and we discuss Chandra Observatory x-ray and Hubble Space Telescope optical follow-up observations of the nebula. Our observations challenge standard models of nebular emission and require power-law acceleration by shock-driven plasma wave turbulence within an approximately 1-day time scale.


Nature | 2009

Extreme particle acceleration in the microquasar Cygnus X-3

Marco Tavani; A. Bulgarelli; Giancarlo Piano; S. Sabatini; E. Striani; Alessio Trois; Guy G. Pooley; S. Trushkin; N. A. Nizhelskij; Michael L. McCollough; K. I. I. Koljonen; G. Pucella; A. Giuliani; Andrew W. Chen; Enrico Costa; V. Vittorini; Massimo Trifoglio; F. Gianotti; A. Argan; G. Barbiellini; P. A. Caraveo; Paolo Walter Cattaneo; V. Cocco; T. Contessi; F. D’Ammando; E. Del Monte; G. De Paris; G. Di Cocco; G. Di Persio; I. Donnarumma

Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated γ-ray emission. Galactic ‘microquasars’, which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnus X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four γ-ray flares with energies above 100 MeV from the microquasar Cygnus X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the γ-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnus X-3, particle energies during the flares can be thousands of times higher than during quiescent states.


Nature | 2009

Discovery of extreme particle acceleration in the microquasar Cygnus X-3

A. Bulgarelli; G. Piano; S. Sabatini; E. Striani; Alessio Trois; Guy G. Pooley; S. Trushkin; N. A. Nizhelskij; Michael L. McCollough; K. I. I. Koljonen; G. Pucella; A. Giuliani; Andrew W. Chen; E. Costa; V. Vittorini; Massimo Trifoglio; F. Gianotti; A. Argan; G. Barbiellini; P. A. Caraveo; Paolo Walter Cattaneo; V. Cocco; T. Contessi; F. D'Ammando; E. Del Monte; G. De Paris; G. Di Cocco; G. Di Persio; I. Donnarumma; M. Feroci

Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated γ-ray emission. Galactic ‘microquasars’, which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnus X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four γ-ray flares with energies above 100 MeV from the microquasar Cygnus X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the γ-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnus X-3, particle energies during the flares can be thousands of times higher than during quiescent states.


Astronomy and Astrophysics | 2009

First AGILE catalog of high-confidence gamma-ray sources

Francesco Verrecchia; Andrew W. Chen; A. Bulgarelli; A. Pellizzoni; A. Giuliani; S. Vercellone; F. Longo; P. Giommi; G. Barbiellini; Massimo Trifoglio; F. Gianotti; A. Argan; A. Antonelli; F. Boffelli; Patrizia A. Caraveo; Paolo Walter Cattaneo; V. Cocco; S. Colafrancesco; T. Contessi; Enrico Costa; S. Cutini; Filippo D'Ammando; E. Del Monte; G. De Paris; G. Di Cocco; G. Di Persio; I. Donnarumma; G. Fanari; M. Feroci; A. Ferrari

We present the first catalog of high-confidence γ-ray sources detected by the AGILE satellite during observations performed from July 9, 2007 to June 30, 2008. Cataloged sources were detected by merging all the available data over the entire time period. AGILE, launched in April 2007, is an ASI mission devoted to γ-ray observations in the 30 MeV–50 GeV energy range, with simultaneous X-ray imaging capability in the 18–60 keV band. This catalog is based on Gamma-Ray Imaging Detector (GRID) data for energies greater than 100 MeV. For the first AGILE catalog, we adopted a conservative analysis, with a high-quality event filter optimized to select γ-ray events within the central zone of the instrument field of view (radius of 40 ◦ ). This is a significance-limited (4σ) catalog, and it is not a complete flux-limited sample due to the non-uniform first-year AGILE sky coverage. The catalog includes 47 sources, 21 of which are associated with confirmed or candidate pulsars, 13 with blazars (7 FSRQ, 4 BL Lacs, 2 unknown type), 2 with HMXRBs, 2 with SNRs, 1 with a colliding-wind binary system, and 8 with unidentified sources.


The Astrophysical Journal | 2010

DIRECT EVIDENCE FOR HADRONIC COSMIC-RAY ACCELERATION IN THE SUPERNOVA REMNANT IC 443

A. Giuliani; Andrew W. Chen; A. Argan; G. Barbiellini; A. Bulgarelli; Patrizia A. Caraveo; Paolo Walter Cattaneo; V. Cocco; T. Contessi; Filippo D'Ammando; Enrico Costa; G. De Paris; E. Del Monte; G. Di Cocco; I. Donnarumma; A. Ferrari; M. Feroci; Fabio Fuschino; M. Galli; F. Gianotti; Claudio Labanti; Igor Y. Lapshov; F. Lazzarotto; P. Lipari; F. Longo; M. Marisaldi; M. Mastropietro; S. Mereghetti; E. Morelli; E. Moretti

The supernova remnant (SNR) IC 443 is an intermediate-age remnant well known for its radio, optical, X-ray, and gamma-ray energy emissions. In this Letter, we study the gamma-ray emission above 100 MeV from IC 443 as obtained by the AGILE satellite. A distinct pattern of diffuse emission in the energy range 100 MeV–3 GeV is detected across the SNR with its prominent maximum (source “A”) localized in the northeastern shell with a flux F = (47 ± 10) × 10 −8 photons cm −2 s −1 above 100 MeV. This location is the site of the strongest shock interaction between the SNR blast wave and the dense circumstellar medium. Source “A” is not coincident with the TeV source located 0.4 ◦ away and associated with a dense molecular cloud complex in the SNR central region. From our observations, and from the lack of detectable diffuse TeV emission from its northeastern rim, we demonstrate that electrons cannot be the main emitters of gamma rays in the range 0.1–10 GeV at the site of the strongest SNR shock. The intensity, spectral characteristics, and location of the most prominent gamma-ray emission together with the absence of cospatial detectable TeV emission are consistent only with a hadronic model of cosmic-ray acceleration in the SNR. A high-density molecular cloud (cloud “E”) provides a remarkable “target” for nucleonic interactions of accelerated hadrons; our results show enhanced gamma-ray production near the molecular cloud/shocked shell interaction site. IC 443 provides the first unambiguous evidence of cosmic-ray acceleration by SNRs.


The Astrophysical Journal | 2009

DETECTION OF GAMMA-RAY EMISSION FROM THE ETA-CARINAE REGION

S. Sabatini; E. Pian; A. Bulgarelli; Patrizia A. Caraveo; Roberto Viotti; M. F. Corcoran; A. Giuliani; F. Verrecchia; S. Vercellone; S. Mereghetti; A. Argan; G. Barbiellini; F. Boffelli; Paolo Walter Cattaneo; Andrew W. Chen; V. Cocco; Filippo D'Ammando; Enrico Costa; G. De Paris; E. Del Monte; G. Di Cocco; I. Donnarumma; A. Ferrari; M. Feroci; M. Fiorini; T. Froysland; Fabio Fuschino; M. Galli; F. Gianotti; Claudio Labanti

We present the results of extensive observations by the gamma-ray AGILE satellite of the Galactic region hosting the Carina nebula and the remarkable colliding wind binary Eta Carinae (η Car) during the period 2007 July-2009 January. We detect a gamma-ray source (1AGL J1043–5931) consistent with the position of η Car. If 1AGL J1043–5931 is associated with the Car system, our data provide the long sought first detection above 100 MeV of a colliding wind binary. The average gamma-ray flux above 100 MeV and integrated over the preperiastron period 2007 July-2008 October is F γ = (37 ± 5) × 10–8 ph cm–2 s–1 corresponding to an average gamma-ray luminosity of L γ = 3.4 × 1034 erg s–1 for a distance of 2.3 kpc. We also report a two-day gamma-ray flaring episode of 1AGL J1043–5931 on 2008 October 11-13 possibly related to a transient acceleration and radiation episode of the strongly variable shock in the system.


The Astrophysical Journal | 2010

THE EXTRAORDINARY GAMMA-RAY FLARE OF THE BLAZAR 3C 454.3

E. Striani; S. Vercellone; V. Vittorini; F. D’Ammando; I. Donnarumma; Luigi Pacciani; G. Pucella; A. Bulgarelli; Massimo Trifoglio; F. Gianotti; P. Giommi; A. Argan; G. Barbiellini; Patrizia A. Caraveo; Paolo Walter Cattaneo; Andrew W. Chen; Enrico Costa; G. De Paris; E. Del Monte; G. Di Cocco; M. Feroci; A. Ferrari; M. Fiorini; Fabio Fuschino; M. Galli; A. Giuliani; M. Giusti; Claudio Labanti; F. Lazzarotto; P. Lipari

We present the gamma-ray data of the extraordinary flaring activity above 100?MeV from the flat spectrum radio quasar 3C 454.3 detected by AGILE during the month of 2009 December. 3C 454.3, which has been among the most active blazars of the FSRQ type since 2007, has been detected in the gamma-ray range with a progressively rising flux since 2009 November 10. The gamma-ray flux reached a value comparable with that of the Vela pulsar on 2009 December 2. Remarkably, between 2009 December 2 and 3, the source more than doubled its gamma-ray emission and became the brightest gamma-ray source in the sky with a peak flux of F ?,p = (2000 ? 400) ? 10?8 ph cm?2 s?1 for a 1 day integration above 100?MeV. The gamma-ray intensity decreased in the following days with the source flux remaining at large values near F ? (1000 ? 200) ? 10?8 ph cm?2 s?1 for more than a week. This exceptional gamma-ray flare dissipated among the largest ever detected intrinsic radiated power in gamma-rays above 100?MeV (L ?,source,peak 3 ? 1046 erg s?1, for a relativistic Doppler factor of ? 30). The total isotropic irradiated energy of the month-long episode in the range 100?MeV-3?GeV is E ?,iso 1056 erg. We report the intensity and spectral evolution of the gamma-ray emission across the flaring episode. We briefly discuss the important theoretical implications of our detection.


Astronomy and Astrophysics | 2012

AGILE detection of Cygnus X-3 gamma-ray active states during the period mid-2009/mid-2010

A. Bulgarelli; Andrew W. Chen; Massimo Trifoglio; F. Gianotti; G. Piano; S. Sabatini; E. Striani; Guy G. Pooley; S. Trushkin; N. A. Nizhelskij; Michael Leon McCollough; K. I. I. Koljonen; D. C. Hannikainen; A. Lähteenmäki; J. Tammi; N. Lavonen; D. Steeghs; A. Aboudan; A. Argan; G. Barbiellini; R. Campana; Patrizia A. Caraveo; Paolo Walter Cattaneo; V. Cocco; T. Contessi; Enrico Costa; F. D'Ammando; E. Del Monte; G. De Paris; G. Di Cocco

Context. Cygnus X-3 (Cyg X-3) is a well-known microquasar producing variable emission at all wavelengths. Cyg X-3 is a prominent X-ray binary producing relativistic jets, and studying its high energy emission is crucial for the understanding of the fundamental acceleration processes in accreting compact objects. Aims. Our goal is to study extreme particle acceleration and γ-ray production above 100 MeV during special spectral states of Cyg X-3 usually characterized by a low hard X-ray flux and enhanced soft X-ray states. Methods. We observed Cyg X-3 with the AGILE satellite in extended time intervals from 2009 Jun.–Jul., and 2009 Nov.–2010 Jul. We report here the results of the AGILE γ-ray monitoring of Cyg X-3 as well as the results from extensive multiwavelength campaigns involving radio (RATAN-600, AMI-LA and Metsahovi Radio Observatories) and X-ray monitoring data (XTE and Swift). Results. We detect a series of repeated γ-ray flaring activity from Cyg X-3 that correlate with the soft X-ray states and episodes of decreasing or non-detectable hard X-ray emission. Furthermore, we detect γ-ray enhanced emission that tends to be associated with radio flares greater than 1 Jy at 15 GHz, confirming a trend already detected in previous observations. The source remained active above 100 MeV for an extended period of time (almost 1.5 months in 2009 Jun.–Jul. and 1 month in 2010 May). We study in detail the short timescale γ-ray flares that occurred before or near the radio peaks. Conclusions. Our results confirm the transient nature of the extreme particle acceleration from the microquasar Cyg X-3. A series of repeated γ-ray flares shows correlations with radio and X-ray emission confirming a well established trend of emission. We compare our results with Fermi-LAT and MAGIC TeV observations of Cyg X-3.


Experimental Astronomy | 2010

POLARIX: a pathfinder mission of X-ray polarimetry

Enrico Costa; R. Bellazzini; Gianpiero Tagliaferri; Giorgio Matt; A. Argan; Primo Attinà; L. Baldini; S. Basso; Alessandro Brez; Oberto Citterio; Sergio Di Cosimo; Vincenzo Cotroneo; Sergio Fabiani; M. Feroci; Antonella Ferri; Luca Latronico; Francesco Lazzarotto; M. Minuti; E. Morelli; Fabio Muleri; Lucio Nicolini; Giovanni Pareschi; Giuseppe Di Persio; Michele Pinchera; M. Razzano; Luigia Reboa; A. Rubini; Antonio Salonico; C. Sgrò; Paolo Soffitta

Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray polarimetry promises to provide additional information procuring two new observable quantities, the degree and the angle of polarization. Polarization from celestial X-ray sources may derive from emission mechanisms themselves such as cyclotron, synchrotron and non-thermal bremsstrahlung, from scattering in aspheric accreting plasmas, such as disks, blobs and columns and from the presence of extreme magnetic field by means of vacuum polarization and birefringence. Matter in strong gravity fields and Quantum Gravity effects can be studied by X-ray polarimetry, too. POLARIX is a mission dedicated to X-ray polarimetry. It exploits the polarimetric response of a Gas Pixel Detector, combined with position sensitivity, that, at the focus of a telescope, results in a huge increase of sensitivity. The heart of the detector is an Application-Specific Integrated Circuit (ASIC) chip with 105,600 pixels each one containing a full complete electronic chain to image the track produced by the photoelectron. Three Gas Pixel Detectors are coupled with three X-ray optics which are the heritage of JET-X mission. A filter wheel hosting calibration sources unpolarized and polarized is dedicated to each detector for periodic on-ground and in-flight calibration. POLARIX will measure time resolved X-ray polarization with an angular resolution of about 20 arcsec in a field of view of 15 × 15 arcmin and with an energy resolution of 20% at 6 keV. The Minimum Detectable Polarization is 12% for a source having a flux of 1 mCrab and 105 s of observing time. The satellite will be placed in an equatorial orbit of 505 km of altitude by a Vega launcher. The telemetry down-link station will be Malindi. The pointing of POLARIX satellite will be gyroless and it will perform a double pointing during the earth occultation of one source, so maximizing the scientific return. POLARIX data are for 75% open to the community while 25% + SVP (Science Verification Phase, 1 month of operation) is dedicated to a core program activity open to the contribution of associated scientists. The planned duration of the mission is one year plus three months of commissioning and SVP, suitable to perform most of the basic science within the reach of this instrument. A nice to have idea is to use the same existing mandrels to build two additional telescopes of iridium with carbon coating plus two more detectors. The effective area in this case would be almost doubled.

Collaboration


Dive into the E. Morelli's collaboration.

Researchain Logo
Decentralizing Knowledge