Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Patrick Donahue is active.

Publication


Featured researches published by E. Patrick Donahue.


American Journal of Physiology-endocrinology and Metabolism | 2010

Glucagon and lipid interactions in the regulation of hepatic AMPK signaling and expression of PPARα and FGF21 transcripts in vivo

Eric D. Berglund; Li Kang; Robert S. Lee-Young; Clinton M. Hasenour; Daniel G. Lustig; Sara E. Lynes; E. Patrick Donahue; Maureen J. Charron; David H. Wasserman

Hepatic glucagon action increases in response to accelerated metabolic demands and is associated with increased whole body substrate availability, including circulating lipids. The hypothesis that increases in hepatic glucagon action stimulate AMP-activated protein kinase (AMPK) signaling and peroxisome proliferator-activated receptor-α (PPARα) and fibroblast growth factor 21 (FGF21) expression in a manner modulated by fatty acids was tested in vivo. Wild-type (gcgr(+/+)) and glucagon receptor-null (gcgr(-/-)) littermate mice were studied using an 18-h fast, exercise, and hyperglucagonemic-euglycemic clamps plus or minus increased circulating lipids. Fasting and exercise in gcgr(+/+), but not gcgr(-/-) mice, increased hepatic phosphorylated AMPKα at threonine 172 (p-AMPK(Thr(172))) and PPARα and FGF21 mRNA. Clamp results in gcgr(+/+) mice demonstrate that hyperlipidemia does not independently impact or modify glucagon-stimulated increases in hepatic AMP/ATP, p-AMPK(Thr(172)), or PPARα and FGF21 mRNA. It blunted glucagon-stimulated acetyl-CoA carboxylase phosphorylation, a downstream target of AMPK, and accentuated PPARα and FGF21 expression. All effects were absent in gcgr(-/-) mice. These findings demonstrate that glucagon exerts a critical regulatory role in liver to stimulate pathways linked to lipid metabolism in vivo and shows for the first time that effects of glucagon on PPARα and FGF21 expression are amplified by a physiological increase in circulating lipids.


Journal of Clinical Investigation | 2011

Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs

Christopher J. Ramnanan; Viswanathan Saraswathi; Marta S. Smith; E. Patrick Donahue; Ben Farmer; Tiffany D. Farmer; Doss W. Neal; Philip E. Williams; Margaret Lautz; Andrea Mari; Alan D. Cherrington; Dale S. Edgerton

In rodents, acute brain insulin action reduces blood glucose levels by suppressing the expression of enzymes in the hepatic gluconeogenic pathway, thereby reducing gluconeogenesis and endogenous glucose production (EGP). Whether a similar mechanism is functional in large animals, including humans, is unknown. Here, we demonstrated that in canines, physiologic brain hyperinsulinemia brought about by infusion of insulin into the head arteries (during a pancreatic clamp to maintain basal hepatic insulin and glucagon levels) activated hypothalamic Akt, altered STAT3 signaling in the liver, and suppressed hepatic gluconeogenic gene expression without altering EGP or gluconeogenesis. Rather, brain hyperinsulinemia slowly caused a modest reduction in net hepatic glucose output (NHGO) that was attributable to increased net hepatic glucose uptake and glycogen synthesis. This was associated with decreased levels of glycogen synthase kinase 3β (GSK3β) protein and mRNA and with decreased glycogen synthase phosphorylation, changes that were blocked by hypothalamic PI3K inhibition. Therefore, we conclude that the canine brain senses physiologic elevations in plasma insulin, and that this in turn regulates genetic events in the liver. In the context of basal insulin and glucagon levels at the liver, this input augments hepatic glucose uptake and glycogen synthesis, reducing NHGO without altering EGP.


Diabetes | 2010

Molecular Characterization of Insulin-Mediated Suppression of Hepatic Glucose Production In Vivo

Christopher J. Ramnanan; Dale S. Edgerton; Noelia Rivera; Jose M. Irimia-Dominguez; Ben Farmer; Doss W. Neal; Margaret Lautz; E. Patrick Donahue; Catalina M. Meyer; Peter J. Roach; Alan D. Cherrington

OBJECTIVE Insulin-mediated suppression of hepatic glucose production (HGP) is associated with sensitive intracellular signaling and molecular inhibition of gluconeogenic (GNG) enzyme mRNA expression. We determined, for the first time, the time course and relevance (to metabolic flux) of these molecular events during physiological hyperinsulinemia in vivo in a large animal model. RESEARCH DESIGN AND METHODS 24 h fasted dogs were infused with somatostatin, while insulin (basal or 8× basal) and glucagon (basal) were replaced intraportally. Euglycemia was maintained and glucose metabolism was assessed using tracer, 2H2O, and arterio-venous difference techniques. Studies were terminated at different time points to evaluate insulin signaling and enzyme regulation in the liver. RESULTS Hyperinsulinemia reduced HGP due to a rapid transition from net glycogen breakdown to synthesis, which was associated with an increase in glycogen synthase and a decrease in glycogen phosphorylase activity. Thirty minutes of hyperinsulinemia resulted in an increase in phospho-FOXO1, a decrease in GNG enzyme mRNA expression, an increase in F2,6P2, a decrease in fat oxidation, and a transient decrease in net GNG flux. Net GNG flux was restored to basal by 4 h, despite a substantial reduction in PEPCK protein, as gluconeogenically-derived carbon was redirected from lactate efflux to glycogen deposition. CONCLUSIONS In response to acute physiologic hyperinsulinemia, 1) HGP is suppressed primarily through modulation of glycogen metabolism; 2) a transient reduction in net GNG flux occurs and is explained by increased glycolysis resulting from increased F2,6P2 and decreased fat oxidation; and 3) net GNG flux is not ultimately inhibited by the rise in insulin, despite eventual reduction in PEPCK protein, supporting the concept that PEPCK has poor control strength over the gluconeogenic pathway in vivo.


Journal of Clinical Investigation | 2009

Hepatic energy state is regulated by glucagon receptor signaling in mice

Eric D. Berglund; Robert S. Lee-Young; Daniel G. Lustig; Sara E. Lynes; E. Patrick Donahue; Raul C. Camacho; M. Elizabeth Meredith; Mark A. Magnuson; Maureen J. Charron; David H. Wasserman

The hepatic energy state, defined by adenine nucleotide levels, couples metabolic pathways with energy requirements. This coupling is fundamental in the adaptive response to many conditions and is impaired in metabolic disease. We have found that the hepatic energy state is substantially reduced following exercise, fasting, and exposure to other metabolic stressors in C57BL/6 mice. Glucagon receptor signaling was hypothesized to mediate this reduction because increased plasma levels of glucagon are characteristic of metabolic stress and because this hormone stimulates energy consumption linked to increased gluconeogenic flux through cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) and associated pathways. We developed what we believe to be a novel hyperglucagonemic-euglycemic clamp to isolate an increment in glucagon levels while maintaining fasting glucose and insulin. Metabolic stress and a physiological rise in glucagon lowered the hepatic energy state and amplified AMP-activated protein kinase signaling in control mice, but these changes were abolished in glucagon receptor- null mice and mice with liver-specific PEPCK-C deletion. 129X1/Sv mice, which do not mount a glucagon response to hypoglycemia, displayed an increased hepatic energy state compared with C57BL/6 mice in which glucagon was elevated. Taken together, these data demonstrate in vivo that the hepatic energy state is sensitive to glucagon receptor activation and requires PEPCK-C, thus providing new insights into liver metabolism.


Diabetes | 2006

Glucose Toxicity Is Responsible for the Development of Impaired Regulation of Endogenous Glucose Production and Hepatic Glucokinase in Zucker Diabetic Fatty Rats

Yuka Fujimoto; Tracy P. Torres; E. Patrick Donahue; Masakazu Shiota

The effect of restoration of normoglycemia by a novel sodium-dependent glucose transporter inhibitor (T-1095) on impaired hepatic glucose uptake was examined in 14-week-old Zucker diabetic fatty (ZDF) rats. The nontreated group exhibited persistent endogenous glucose production (EGP) despite marked hyperglycemia. Gluconeogenesis and glucose cycling (GC) were responsible for 46 and 51% of glucose-6-phosphatase (G6Pase) flux, respectively. Net incorporation of plasma glucose into hepatic glycogen was negligible. Glucokinase (GK) and its inhibitory protein, GK regulatory protein (GKRP), were colocalized in the cytoplasm of hepatocytes. At day 7 of drug administration, EGP was slightly reduced, but G6Pase flux and GC were markedly lower compared with the nontreated group. In this case, GK and GKRP were colocalized in the nuclei of hepatocytes. When plasma glucose and insulin levels were raised during a clamp, EGP was completely suppressed and GC, glycogen synthesis from plasma glucose, and the fractional contribution of plasma glucose to uridine diphosphoglucose flux were markedly increased. GK, but not GKRP, was translocated from the nucleus to the cytoplasm. Glucotoxicity may result in the blunted response of hepatic glucose flux to elevated plasma glucose and/or insulin associated with impaired regulation of GK by GKRP in ZDF rats.


Journal of Biological Chemistry | 2014

5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) Effect on Glucose Production, but Not Energy Metabolism, Is Independent of Hepatic AMPK in Vivo

Clinton M. Hasenour; D. Emerson Ridley; Curtis C. Hughey; Freyja D. James; E. Patrick Donahue; Jane Shearer; Benoit Viollet; Marc Foretz; David H. Wasserman

Background: AMPK is implicated as the mediator of AICAR action on liver metabolism. Results: AICAR suppresses glucose production independent of AMPK. Regulation of mitochondrial function is AMPK-dependent. Conclusion: Nucleotide monophosphates rely on AMPK to regulate energy metabolism but not to suppress glucose production. Significance: Targeted AMPK activation will not lower glucose production in metabolic diseases but could improve hepatic energetics. Metabolic stress, as well as several antidiabetic agents, increases hepatic nucleotide monophosphate (NMP) levels, activates AMP-activated protein kinase (AMPK), and suppresses glucose production. We tested the necessity of hepatic AMPK for the in vivo effects of an acute elevation in NMP on metabolism. 5-Aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR; 8 mg·kg−1·min−1)-euglycemic clamps were performed to elicit an increase in NMP in wild type (α1α2lox/lox) and liver-specific AMPK knock-out mice (α1α2lox/lox + Albcre) in the presence of fixed glucose. Glucose kinetics were equivalent in 5-h fasted α1α2lox/lox and α1α2lox/lox + Albcre mice. AMPK was not required for AICAR-mediated suppression of glucose production and increased glucose disappearance. These results demonstrate that AMPK is unnecessary for normal 5-h fasting glucose kinetics and AICAR-mediated inhibition of glucose production. Moreover, plasma fatty acids and triglycerides also decreased independently of hepatic AMPK during AICAR administration. Although the glucoregulatory effects of AICAR were shown to be independent of AMPK, these studies provide in vivo support for the AMPK energy sensor paradigm. AICAR reduced hepatic energy charge by ∼20% in α1α2lox/lox, which was exacerbated by ∼2-fold in α1α2lox/lox + Albcre. This corresponded to a ∼6-fold rise in AMP/ATP in α1α2lox/lox + Albcre. Consistent with the effects on adenine nucleotides, maximal mitochondrial respiration was ∼30% lower in α1α2lox/lox + Albcre than α1α2lox/lox livers. Mitochondrial oxidative phosphorylation efficiency was reduced by 25%. In summary, these results demonstrate that the NMP capacity to inhibit glucose production in vivo is independent of liver AMPK. In contrast, AMPK promotes mitochondrial function and protects against a more precipitous fall in ATP during AICAR administration.


Diabetes | 2011

Hepatic Glucagon Action Is Essential for Exercise-Induced Reversal of Mouse Fatty Liver

Eric D. Berglund; Daniel G. Lustig; Richard A. Baheza; Clinton M. Hasenour; Robert S. Lee-Young; E. Patrick Donahue; Sara E. Lynes; Maureen J. Charron; Bruce M. Damon; David H. Wasserman

OBJECTIVE Exercise is an effective intervention to treat fatty liver. However, the mechanism(s) that underlie exercise-induced reductions in fatty liver are unclear. Here we tested the hypothesis that exercise requires hepatic glucagon action to reduce fatty liver. RESEARCH DESIGN AND METHODS C57BL/6 mice were fed high-fat diet (HFD) and assessed using magnetic resonance, biochemical, and histological techniques to establish a timeline for fatty liver development over 20 weeks. Glucagon receptor null (gcgr−/−) and wild-type (gcgr+/+) littermate mice were subsequently fed HFD to provoke moderate fatty liver and then performed either 10 or 6 weeks of running wheel or treadmill exercise, respectively. RESULTS Exercise reverses progression of HFD-induced fatty liver in gcgr+/+ mice. Remarkably, such changes are absent in gcgr−/− mice, thus confirming the hypothesis that exercise-stimulated hepatic glucagon receptor activation is critical to reduce HFD-induced fatty liver. CONCLUSIONS These findings suggest that therapies that use antagonism of hepatic glucagon action to reduce blood glucose may interfere with the ability of exercise and perhaps other interventions to positively affect fatty liver.


American Journal of Physiology-endocrinology and Metabolism | 1998

Effect of a selective rise in sinusoidal norepinephrine on HGP is due to an increase in glycogenolysis

Chang An Chu; Dana K. Sindelar; Doss W. Neal; Eric J. Allen; E. Patrick Donahue; Alan D. Cherrington

To determine the effect of a selective rise in liver sinusoidal norepinephrine (NE) on hepatic glucose production (HGP), norepinephrine (50 ng.kg-1.min-1) was infused intraportally (Po-NE) for 3 h into five 18-h-fasted conscious dogs with a pancreatic clamp. In the control protocol, NE (0.2 ng.kg-1.min-1) and glucose were infused peripherally to match the arterial NE and blood glucose levels in the Po-NE group. Hepatic sinusoidal NE levels rose approximately 30-fold in the Po-NE group but did not change in the control group. The arterial NE levels did not change significantly in either group. During the portal NE infusion, HGP increased from 1.9 +/- 0.2 to 3.5 +/- 0.4 mg.kg-1.min-1 (15 min; P < 0.05) and then gradually fell to 2.4 +/- 0.4 mg.kg-1.min-1 by 3 h. HGP in the control group did not change (2.0 +/- 0.2 to 2.0 +/- 0.2 mg.kg-1.min-1) for 15 min but then gradually fell to 1.1 +/- 0.2 mg.kg-1.min-1 by the end of the study. Because the fall in HGP from 15 min on was parallel in the two groups, the effect of NE on HGP (the difference between HGP in the two groups) did not decline over time. Gluconeogenesis did not change significantly in either group. In conclusion, elevation in hepatic sinusoidal NE significantly increases HGP by selectively stimulating glycogenolysis. Compared with the previously determined effects of epinephrine or glucagon on HGP, the effect of NE is, on a molar basis, less potent but more sustained over time.To determine the effect of a selective rise in liver sinusoidal norepinephrine (NE) on hepatic glucose production (HGP), norepinephrine (50 ng ⋅ kg-1 ⋅ min-1) was infused intraportally (Po-NE) for 3 h into five 18-h-fasted conscious dogs with a pancreatic clamp. In the control protocol, NE (0.2 ng ⋅ kg-1 ⋅ min-1) and glucose were infused peripherally to match the arterial NE and blood glucose levels in the Po-NE group. Hepatic sinusoidal NE levels rose ∼30-fold in the Po-NE group but did not change in the control group. The arterial NE levels did not change significantly in either group. During the portal NE infusion, HGP increased from 1.9 ± 0.2 to 3.5 ± 0.4 mg ⋅ kg-1 ⋅ min-1(15 min; P < 0.05) and then gradually fell to 2.4 ± 0.4 mg ⋅ kg-1 ⋅ min-1by 3 h. HGP in the control group did not change (2.0 ± 0.2 to 2.0 ± 0.2 mg ⋅ kg-1 ⋅ min-1) for 15 min but then gradually fell to 1.1 ± 0.2 mg ⋅ kg-1 ⋅ min-1by the end of the study. Because the fall in HGP from 15 min on was parallel in the two groups, the effect of NE on HGP (the difference between HGP in the two groups) did not decline over time. Gluconeogenesis did not change significantly in either group. In conclusion, elevation in hepatic sinusoidal NE significantly increases HGP by selectively stimulating glycogenolysis. Compared with the previously determined effects of epinephrine or glucagon on HGP, the effect of NE is, on a molar basis, less potent but nore sustained over time.


Diabetes | 2013

Interaction Between the Central and Peripheral Effects of Insulin in Controlling Hepatic Glucose Metabolism in the Conscious Dog

Christopher J. Ramnanan; Guillaume Kraft; Marta S. Smith; Ben Farmer; Doss W. Neal; Phillip E. Williams; Margaret Lautz; Tiffany D. Farmer; E. Patrick Donahue; Alan D. Cherrington; Dale S. Edgerton

The importance of hypothalamic insulin action to the regulation of hepatic glucose metabolism in the presence of a normal liver/brain insulin ratio (3:1) is unknown. Thus, we assessed the role of central insulin action in the response of the liver to normal physiologic hyperinsulinemia over 4 h. Using a pancreatic clamp, hepatic portal vein insulin delivery was increased three- or eightfold in the conscious dog. Insulin action was studied in the presence or absence of intracerebroventricularly mediated blockade of hypothalamic insulin action. Euglycemia was maintained, and glucagon was clamped at basal. Both the molecular and metabolic aspects of insulin action were assessed. Blockade of hypothalamic insulin signaling did not alter the insulin-mediated suppression of hepatic gluconeogenic gene transcription but blunted the induction of glucokinase gene transcription and completely blocked the inhibition of glycogen synthase kinase-3β gene transcription. Thus, central and peripheral insulin action combined to control some, but not other, hepatic enzyme programs. Nevertheless, inhibition of hypothalamic insulin action did not alter the effects of the hormone on hepatic glucose flux (production or uptake). These data indicate that brain insulin action is not a determinant of the rapid (<4 h) inhibition of hepatic glucose metabolism caused by normal physiologic hyperinsulinemia in this large animal model.


Diabetes | 2015

Insulin Delivery Into the Peripheral Circulation: A Key Contributor to Hypoglycemia in Type 1 Diabetes.

Justin M. Gregory; Guillaume Kraft; Melanie Scott; Doss W. Neal; Ben Farmer; Marta S. Smith; Jon R. Hastings; Eric J. Allen; E. Patrick Donahue; Noelia Rivera; Jason J. Winnick; Dale S. Edgerton; Erica Nishimura; Christian Fledelius; Christian L. Brand; Alan D. Cherrington

Hypoglycemia limits optimal glycemic control in type 1 diabetes mellitus (T1DM), making novel strategies to mitigate it desirable. We hypothesized that portal (Po) vein insulin delivery would lessen hypoglycemia. In the conscious dog, insulin was infused into the hepatic Po vein or a peripheral (Pe) vein at a rate four times of basal. In protocol 1, a full counterregulatory response was allowed, whereas in protocol 2, glucagon was fixed at basal, mimicking the diminished α-cell response to hypoglycemia seen in T1DM. In protocol 1, glucose fell faster with Pe insulin than with Po insulin, reaching 56 ± 3 vs. 70 ± 6 mg/dL (P = 0.04) at 60 min. The change in area under the curve (ΔAUC) for glucagon was similar between Pe and Po, but the peak occurred earlier in Pe. The ΔAUC for epinephrine was greater with Pe than with Po (67 ± 17 vs. 36 ± 14 ng/mL/180 min). In protocol 2, glucose also fell more rapidly than in protocol 1 and fell faster in Pe than in Po, reaching 41 ± 3 vs. 67 ± 2 mg/dL (P < 0.01) by 60 min. Without a rise in glucagon, the epinephrine responses were much larger (ΔAUC of 204 ± 22 for Pe vs. 96 ± 29 ng/mL/180 min for Po). In summary, Pe insulin delivery exacerbates hypoglycemia, particularly in the presence of a diminished glucagon response. Po vein insulin delivery, or strategies that mimic it (i.e., liver-preferential insulin analogs), should therefore lessen hypoglycemia.

Collaboration


Dive into the E. Patrick Donahue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge