Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume Kraft is active.

Publication


Featured researches published by Guillaume Kraft.


Diabetes, Obesity and Metabolism | 2011

Physiologic action of glucagon on liver glucose metabolism

Christopher J. Ramnanan; Dale S. Edgerton; Guillaume Kraft; Alan D. Cherrington

Glucagon is a primary regulator of hepatic glucose production (HGP) in vivo during fasting, exercise and hypoglycaemia. Glucagon also plays a role in limiting hepatic glucose uptake and producing the hyperglycaemic phenotype associated with insulin deficiency and insulin resistance. In response to a physiological rise in glucagon, HGP is rapidly stimulated. This increase in HGP is entirely attributable to an enhancement of glycogenolysis, with little to no acute effect on gluconeogenesis. This dramatic rise in glycogenolysis in response to hyperglucagonemia wanes with time. A component of this waning effect is known to be independent of hyperglycemia, though the molecular basis for this tachyphylaxis is not fully understood. In the overnight fasted state, the presence of basal glucagon secretion is essential in countering the suppressive effects of basal insulin, resulting in the maintenance of appropriate levels of glycogenolysis, fasting HGP and blood glucose. The enhancement of glycogenolysis in response to elevated glucagon is critical in the life‐preserving counterregulatory response to hypoglycaemia, as well as a key factor in providing adequate circulating glucose for working muscle during exercise. Finally, glucagon has a key role in promoting the catabolic consequences associated with states of deficient insulin action, which supports the therapeutic potential in developing glucagon receptor antagonists or inhibitors of glucagon secretion.


Diabetes | 2013

Interaction Between the Central and Peripheral Effects of Insulin in Controlling Hepatic Glucose Metabolism in the Conscious Dog

Christopher J. Ramnanan; Guillaume Kraft; Marta S. Smith; Ben Farmer; Doss W. Neal; Phillip E. Williams; Margaret Lautz; Tiffany D. Farmer; E. Patrick Donahue; Alan D. Cherrington; Dale S. Edgerton

The importance of hypothalamic insulin action to the regulation of hepatic glucose metabolism in the presence of a normal liver/brain insulin ratio (3:1) is unknown. Thus, we assessed the role of central insulin action in the response of the liver to normal physiologic hyperinsulinemia over 4 h. Using a pancreatic clamp, hepatic portal vein insulin delivery was increased three- or eightfold in the conscious dog. Insulin action was studied in the presence or absence of intracerebroventricularly mediated blockade of hypothalamic insulin action. Euglycemia was maintained, and glucagon was clamped at basal. Both the molecular and metabolic aspects of insulin action were assessed. Blockade of hypothalamic insulin signaling did not alter the insulin-mediated suppression of hepatic gluconeogenic gene transcription but blunted the induction of glucokinase gene transcription and completely blocked the inhibition of glycogen synthase kinase-3β gene transcription. Thus, central and peripheral insulin action combined to control some, but not other, hepatic enzyme programs. Nevertheless, inhibition of hypothalamic insulin action did not alter the effects of the hormone on hepatic glucose flux (production or uptake). These data indicate that brain insulin action is not a determinant of the rapid (<4 h) inhibition of hepatic glucose metabolism caused by normal physiologic hyperinsulinemia in this large animal model.


Journal of Nutrition | 2011

A High-Fat, High-Fructose Diet Accelerates Nutrient Absorption and Impairs Net Hepatic Glucose Uptake in Response to a Mixed Meal in Partially Pancreatectomized Dogs

Katie C. Coate; Guillaume Kraft; Margaret Lautz; Marta S. Smith; Doss W. Neal; Alan D. Cherrington

The aim of this study was to elucidate the impact of a high-fat, high-fructose diet (HFFD; fat, 52%; fructose, 17%), in the presence of a partial (~65%) pancreatectomy (PPx), on the response of the liver and extrahepatic tissues to an orally administered, liquid mixed meal. Adult male dogs were fed either a nonpurified, canine control diet (CTR; fat, 26%; no fructose; n = 5) or a HFFD (n = 5) for 8 wk. Diets were provided in a quantity to maintain neutral or positive energy balance in CTR or HFFD, respectively. Dogs underwent a sham operation or PPx at wk 0, portal and hepatic vein catheterization at wk 6, and a mixed meal test at wk 8. Postprandial glucose concentrations were significantly greater in the HFFD group (14.5 ± 2.0 mmol/L) than in the CTR group (9.2 ± 0.5 mmol/L). Impaired glucose tolerance in HFFD was due in part to accelerated gastric emptying and glucose absorption, as indicated by a more rapid rise in arterial plasma acetaminophen and the rate of glucose output by the gut, respectively, in HFFD than in CTR. It was also attributable to lower net hepatic glucose uptake (NHGU) in the HFFD group (5.5 ± 3.9 μmol · kg(-1) · min(-1)) compared to the CTR group (26.6 ± 7.0 μmol · kg(-1) · min(-1)), resulting in lower hepatic glycogen synthesis (GSYN) in the HFFD group (10.8 ± 5.4 μmol · kg(-1) · min(-1)) than in the CTR group (30.4 ± 7.0 μmol · kg(-1) · min(-1)). HFFD also displayed aberrant suppression of lipolysis by insulin. In conclusion, HFFD feeding accelerates gastric emptying and diminishes NHGU and GSYN, thereby impairing glucose tolerance following a mixed meal challenge. These data reveal a constellation of deleterious metabolic consequences associated with consumption of a HFFD for 8 wk.


Diabetes | 2015

Insulin Delivery Into the Peripheral Circulation: A Key Contributor to Hypoglycemia in Type 1 Diabetes.

Justin M. Gregory; Guillaume Kraft; Melanie Scott; Doss W. Neal; Ben Farmer; Marta S. Smith; Jon R. Hastings; Eric J. Allen; E. Patrick Donahue; Noelia Rivera; Jason J. Winnick; Dale S. Edgerton; Erica Nishimura; Christian Fledelius; Christian L. Brand; Alan D. Cherrington

Hypoglycemia limits optimal glycemic control in type 1 diabetes mellitus (T1DM), making novel strategies to mitigate it desirable. We hypothesized that portal (Po) vein insulin delivery would lessen hypoglycemia. In the conscious dog, insulin was infused into the hepatic Po vein or a peripheral (Pe) vein at a rate four times of basal. In protocol 1, a full counterregulatory response was allowed, whereas in protocol 2, glucagon was fixed at basal, mimicking the diminished α-cell response to hypoglycemia seen in T1DM. In protocol 1, glucose fell faster with Pe insulin than with Po insulin, reaching 56 ± 3 vs. 70 ± 6 mg/dL (P = 0.04) at 60 min. The change in area under the curve (ΔAUC) for glucagon was similar between Pe and Po, but the peak occurred earlier in Pe. The ΔAUC for epinephrine was greater with Pe than with Po (67 ± 17 vs. 36 ± 14 ng/mL/180 min). In protocol 2, glucose also fell more rapidly than in protocol 1 and fell faster in Pe than in Po, reaching 41 ± 3 vs. 67 ± 2 mg/dL (P < 0.01) by 60 min. Without a rise in glucagon, the epinephrine responses were much larger (ΔAUC of 204 ± 22 for Pe vs. 96 ± 29 ng/mL/180 min for Po). In summary, Pe insulin delivery exacerbates hypoglycemia, particularly in the presence of a diminished glucagon response. Po vein insulin delivery, or strategies that mimic it (i.e., liver-preferential insulin analogs), should therefore lessen hypoglycemia.


Diabetes | 2013

Portal Vein Glucose Entry Triggers a Coordinated Cellular Response That Potentiates Hepatic Glucose Uptake and Storage in Normal but Not High-Fat/High-Fructose–Fed Dogs

Katie C. Coate; Guillaume Kraft; Jose M. Irimia; Marta S. Smith; Ben Farmer; Doss W. Neal; Peter J. Roach; Masakazu Shiota; Alan D. Cherrington

The cellular events mediating the pleiotropic actions of portal vein glucose (PoG) delivery on hepatic glucose disposition have not been clearly defined. Likewise, the molecular defects associated with postprandial hyperglycemia and impaired hepatic glucose uptake (HGU) following consumption of a high-fat, high-fructose diet (HFFD) are unknown. Our goal was to identify hepatocellular changes elicited by hyperinsulinemia, hyperglycemia, and PoG signaling in normal chow-fed (CTR) and HFFD-fed dogs. In CTR dogs, we demonstrated that PoG infusion in the presence of hyperinsulinemia and hyperglycemia triggered an increase in the activity of hepatic glucokinase (GK) and glycogen synthase (GS), which occurred in association with further augmentation in HGU and glycogen synthesis (GSYN) in vivo. In contrast, 4 weeks of HFFD feeding markedly reduced GK protein content and impaired the activation of GS in association with diminished HGU and GSYN in vivo. Furthermore, the enzymatic changes associated with PoG sensing in chow-fed animals were abolished in HFFD-fed animals, consistent with loss of the stimulatory effects of PoG delivery. These data reveal new insight into the molecular physiology of the portal glucose signaling mechanism under normal conditions and to the pathophysiology of aberrant postprandial hepatic glucose disposition evident under a diet-induced glucose-intolerant condition.


Scientific Reports | 2017

Odd Chain Fatty Acids; New Insights of the Relationship Between the Gut Microbiota, Dietary Intake, Biosynthesis and Glucose Intolerance

Benjamin Jenkins; Kevin Seyssel; Sally Chiu; Pin-Ho Pan; Shih-Yi Lin; Elizabeth Stanley; Zsuzsanna Ament; James West; Keith Summerhill; Julian L. Griffin; Walter Vetter; Kaija J. Autio; Kalervo Hiltunen; Stéphane Hazebrouck; Renata Stepankova; Chun-Jung Chen; M. Alligier; Martine Laville; Mary Courtney Moore; Guillaume Kraft; Alan D. Cherrington; Sarah King; Ronald M. Krauss; Evelyn De Schryver; Paul P. Van Veldhoven; Martin Ronis; Albert Koulman

Recent findings have shown an inverse association between circulating C15:0/C17:0 fatty acids with disease risk, therefore, their origin needs to be determined to understanding their role in these pathologies. Through combinations of both animal and human intervention studies, we comprehensively investigated all possible contributions of these fatty acids from the gut-microbiota, the diet, and novel endogenous biosynthesis. Investigations included an intestinal germ-free study and a C15:0/C17:0 diet dose response study. Endogenous production was assessed through: a stearic acid infusion, phytol supplementation, and a Hacl1−/− mouse model. Two human dietary intervention studies were used to translate the results. Finally, a study comparing baseline C15:0/C17:0 with the prognosis of glucose intolerance. We found that circulating C15:0/C17:0 levels were not influenced by the gut-microbiota. The dose response study showed C15:0 had a linear response, however C17:0 was not directly correlated. The phytol supplementation only decreased C17:0. Stearic acid infusion only increased C17:0. Hacl1−/− only decreased C17:0. The glucose intolerance study showed only C17:0 correlated with prognosis. To summarise, circulating C15:0 and C17:0 are independently derived; C15:0 correlates directly with dietary intake, while C17:0 is substantially biosynthesized, therefore, they are not homologous in the aetiology of metabolic disease. Our findings emphasize the importance of the biosynthesis of C17:0 and recognizing its link with metabolic disease.


Journal of Clinical Investigation | 2016

Hepatic glycogen can regulate hypoglycemic counterregulation via a liver-brain axis

Jason J. Winnick; Guillaume Kraft; Justin M. Gregory; Dale S. Edgerton; Phillip E. Williams; Ian A. Hajizadeh; Maahum Z. Kamal; Marta S. Smith; Ben Farmer; Melanie Scott; Doss W. Neal; E. Patrick Donahue; Eric J. Allen; Alan D. Cherrington

Liver glycogen is important for the counterregulation of hypoglycemia and is reduced in individuals with type 1 diabetes (T1D). Here, we examined the effect of varying hepatic glycogen content on the counterregulatory response to low blood sugar in dogs. During the first 4 hours of each study, hepatic glycogen was increased by augmenting hepatic glucose uptake using hyperglycemia and a low-dose intraportal fructose infusion. After hepatic glycogen levels were increased, animals underwent a 2-hour control period with no fructose infusion followed by a 2-hour hyperinsulinemic/hypoglycemic clamp. Compared with control treatment, fructose infusion caused a large increase in liver glycogen that markedly elevated the response of epinephrine and glucagon to a given hypoglycemia and increased net hepatic glucose output (NHGO). Moreover, prior denervation of the liver abolished the improved counterregulatory responses that resulted from increased liver glycogen content. When hepatic glycogen content was lowered, glucagon and NHGO responses to insulin-induced hypoglycemia were reduced. We conclude that there is a liver-brain counterregulatory axis that is responsive to liver glycogen content. It remains to be determined whether the risk of iatrogenic hypoglycemia in T1D humans could be lessened by targeting metabolic pathway(s) associated with hepatic glycogen repletion.


American Journal of Physiology-endocrinology and Metabolism | 2014

Hepatic glucose uptake and disposition during short-term high-fat vs. high-fructose feeding.

Katie C. Coate; Guillaume Kraft; Mary Courtney Moore; Marta S. Smith; Christopher J. Ramnanan; Jose M. Irimia; Peter J. Roach; Ben Farmer; Doss W. Neal; Phillip E. Williams; Alan D. Cherrington

In dogs consuming a high-fat and -fructose diet (52 and 17% of total energy, respectively) for 4 wk, hepatic glucose uptake (HGU) in response to hyperinsulinemia, hyperglycemia, and portal glucose delivery is markedly blunted with reduction in glucokinase (GK) protein and glycogen synthase (GS) activity. The present study compared the impact of selective increases in dietary fat and fructose on liver glucose metabolism. Dogs consumed weight-maintaining chow (CTR) or hypercaloric high-fat (HFA) or high-fructose (HFR) diets diet for 4 wk before undergoing clamp studies with infusion of somatostatin and intraportal insulin (3-4 times basal) and glucagon (basal). The hepatic glucose load (HGL) was doubled during the clamp using peripheral vein (Pe) glucose infusion in the first 90 min (P1) and portal vein (4 mg·kg(-1)·min(-1)) plus Pe glucose infusion during the final 90 min (P2). During P2, HGU was 2.8 ± 0.2, 1.0 ± 0.2, and 0.8 ± 0.2 mg·kg(-1)·min(-1) in CTR, HFA, and HFR, respectively (P < 0.05 for HFA and HFR vs. CTR). Compared with CTR, hepatic GK protein and catalytic activity were reduced (P < 0.05) 35 and 56%, respectively, in HFA, and 53 and 74%, respectively, in HFR. Liver glycogen concentrations were 20 and 38% lower in HFA and HFR than CTR (P < 0.05). Hepatic Akt phosphorylation was decreased (P < 0.05) in HFA (21%) but not HFR. Thus, HFR impaired hepatic GK and glycogen more than HFA, whereas HFA reduced insulin signaling more than HFR. HFA and HFR effects were not additive, suggesting that they act via the same mechanism or their effects converge at a saturable step.


Diabetes | 2013

Liver Glycogen Loading Dampens Glycogen Synthesis Seen in Response to Either Hyperinsulinemia or Intraportal Glucose Infusion

Jason J. Winnick; Zhibo An; Guillaume Kraft; Christopher J. Ramnanan; Jose M. Irimia; Marta S. Smith; Margaret Lautz; Peter J. Roach; Alan D. Cherrington

The purpose of this study was to determine the effect of liver glycogen loading on net hepatic glycogen synthesis during hyperinsulinemia or hepatic portal vein glucose infusion in vivo. Liver glycogen levels were supercompensated (SCGly) in two groups (using intraportal fructose infusion) but not in two others (Gly) during hyperglycemic-normoinsulinemia. Following a 2-h control period during which fructose infusion was stopped, there was a 2-h experimental period in which the response to hyperglycemia plus either 4× basal insulin (INS) or portal vein glucose infusion (PoG) was measured. Increased hepatic glycogen reduced the percent of glucose taken up by the liver that was deposited in glycogen (74 ± 3 vs. 53 ± 5% in Gly+INS and SCGly+INS, respectively, and 72 ± 3 vs. 50 ± 6% in Gly+PoG and SCGly+PoG, respectively). The reduction in liver glycogen synthesis in SCGly+INS was accompanied by a decrease in both insulin signaling and an increase in AMPK activation, whereas only the latter was observed in SCGly+PoG. These data indicate that liver glycogen loading impairs glycogen synthesis regardless of the signal used to stimulate it.


JCI insight | 2017

Insulin’s direct hepatic effect explains the inhibition of glucose production caused by insulin secretion

Dale S. Edgerton; Guillaume Kraft; Marta S. Smith; Ben Farmer; Phillip E. Williams; Katie C. Coate; Richard L. Printz; Richard M. O’Brien; Alan D. Cherrington

Insulin can inhibit hepatic glucose production (HGP) by acting directly on the liver as well as indirectly through effects on adipose tissue, pancreas, and brain. While insulins indirect effects are indisputable, their physiologic role in the suppression of HGP seen in response to increased insulin secretion is not clear. Likewise, the mechanisms by which insulin suppresses lipolysis and pancreatic α cell secretion under physiologic circumstances are also debated. In this study, insulin was infused into the hepatic portal vein to mimic increased insulin secretion, and insulins indirect liver effects were blocked either individually or collectively. During physiologic hyperinsulinemia, plasma free fatty acid (FFA) and glucagon levels were clamped at basal values and brain insulin action was blocked, but insulins direct effects on the liver were left intact. Insulin was equally effective at suppressing HGP when its indirect effects were absent as when they were present. In addition, the inhibition of lipolysis, as well as glucagon and insulin secretion, did not require CNS insulin action or decreased plasma FFA. This indicates that the rapid suppression of HGP is attributable to insulins direct effect on the liver and that its indirect effects are redundant in the context of a physiologic increase in insulin secretion.

Collaboration


Dive into the Guillaume Kraft's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge