E. S. Kim
Ewha Womans University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. S. Kim.
Journal of Physical Chemistry A | 2015
Abdellah Felouat; Anthony D’Aléo; Azzam Charaf-Eddin; Denis Jacquemin; Boris Le Guennic; E. S. Kim; Kwang Jin Lee; J. H. Woo; Jean-Charles Ribierre; J. W. Wu; Frédéric Fages
Controlling photoinduced intramolecular charge transfer at the molecular scale is key to the development of molecular devices for nanooptoelectronics. Here, we describe the design, synthesis, electronic characterization, and photophysical properties of two electron donor-acceptor molecular systems that consist of tolane and BF2-containing curcuminoid chromophoric subunits connected in a T-shaped arrangement. The two π-conjugated segments intersect at the electron acceptor dioxaborine core. From steady-state electronic absorption and fluorescence emission, we find that the photophysics of the dialkylamino-substituted analogue is governed by the occurrence of two closely lying excited states. From DFT calculations, we show that excitation in either of these two states results in a distinct shift of the electron density, whether it occurs along the curcuminoid or tolane moiety. Femtosecond transient absorption spectroscopy confirmed these findings. As a consequence, the nature of the emitting state and the photophysical properties are strongly dependent on solvent polarity. Moreover, these characteristics can also be switched by protonation or complexation at the nitrogen atom of the amino group. These features set new approaches toward the construction of a three-terminal molecular system in which the lateral branch would transduce a change of electronic state and ultimately control charge transport in a molecular-scale device.
Physical Chemistry Chemical Physics | 2016
Kwang Jin Lee; J. H. Woo; E. S. Kim; Yiming Xiao; X. Su; Leszek Mateusz Mazur; André-Jean Attias; Frédéric Fages; O. Cregut; Alberto Barsella; Fabrice Mathevet; Loic Mager; J. W. Wu; Anthony D'Aléo; Jean-Charles Ribierre
We investigate the photophysical properties of organic donor-acceptor dyad and triad molecular systems based on triphenylene and perylene diimide units linked by a non-conjugated flexible bridge in solution using complementary optical spectroscopy techniques. When these molecules are diluted in dichloromethane solution, energy transfer from the triphenylene to the perylene diimide excited moieties is evidenced by time-resolved fluorescence measurements resulting in a quenching of the emission from the triphenylene moieties. Simultaneously, another quenching process that affects the emission from both donor and acceptor units is observed. Solution ultrafast transient absorption measurements provide evidence of photo-induced charge transfer from either the donor or the acceptor depending upon the excitation. Overall, the analysis of the detailed time-resolved spectroscopic measurements carried out in the dyad and triad systems as well as in the triphenylene and perylene diimide units alone provides useful information both to better understand the relations between energy and charge transfer processes with molecular structures, and for the design of future functional dyad and triad architectures based on donor and acceptor moieties for organic optoelectronic applications.
Journal of Optics | 2015
Y. U. Lee; Eun Young Choi; E. S. Kim; J. H. Woo; Boyoung Kang; J. Kim; Byung Cheol Park; Taeyoon Hong; Jae-Hoon Kim; J. W. Wu
Double Fano resonances are observed in a planar composite metamaterial possessing tripod plasmonic resonances, where a common subradiant driven oscillator is coupled with two superradiant oscillators. As a classical analogue of four-level tripod atomic system, the extinction spectrum of the composite metamaterial exhibits a coherent effect based on double Fano resonances. It is shown that a transfer of the absorbed power between two orthogonal superradiant oscillators is mediated by a common subradiant oscillator.
Nanotechnology | 2013
J. Kim; Y. U. Lee; Boyoung Kang; J. H. Woo; Eun-ho Choi; E. S. Kim; Minji Gwon; D-W Kim; J. W. Wu
By focused ion beam milling, we fabricated near-IR reflective metamaterials consisting of nano-aperture arrays. Optimum parameters of ion beam current and accelerating voltage in the fabrication process are obtained. Nano-apertures constituting reflective metamaterial are successfully milled, and possess a reflective resonance in the near-IR spectral range. With a double-split-ring resonator structure for the nano-aperture, the intensity reflection at resonance is rendered polarization dependent. It is found that the point group symmetry of the nano-aperture array determines the amount of anisotropy in the intensity reflection. Finite-difference time-domain simulation was adopted to identify details of nano-aperture metastructures transferred from nano-aperture patterns by the focused ion beam milling.
Optics Express | 2014
Y. U. Lee; J. Kim; J. H. Woo; L. H. Bang; Eun Young Choi; E. S. Kim; J. W. Wu
Electro-optic switching of refraction is experimentally demonstrated in a phase-discontinuity complementary metasurface twisted nematic cell. The phase-discontinuity complementary metasurface is fabricated by focused-ion-beam milling, and a twisted nematic cell is constructed with complementary V-shape slot antenna metasurface. By application of an external voltage, switching is achieved between ordinary refraction and extraordinary refraction satisfying the generalized Snells law. It has a strong implication for applications in spatial light modulation and wavelength division multiplexer/demultiplexer in a near-IR spectral range.
Optics Express | 2013
Y. U. Lee; Eun Young Choi; J. H. Woo; E. S. Kim; J. W. Wu
Electric switching of reflection resonances at near-IR spectral range is experimentally demonstrated in a reflective metamaterial twisted nematic liquid crystal cell. Reflective metamaterial composed of nano-sized double-split ring resonator aperture is fabricated by a focused ion beam milling. Two-fold rotational symmetry of double-split ring resonators allows for two orthogonal polarization-dependent reflection resonances in the reflective metamaterial. With an external voltage of 10V across 12μm cell gap, a full switching is achieved between two reflection resonances. Dynamic measurements show the time constants of switch-on and switch-off are in the order of 100ms and 10ms, respectively.
Nature Materials | 2017
Kwang Jin Lee; Yiming Xiao; J. H. Woo; E. S. Kim; David Kreher; André Jean Attias; Fabrice Mathevet; Jean-Charles Ribierre; J. W. Wu; Pascal André
Charge transfer (CT) is a fundamental and ubiquitous mechanism in biology, physics and chemistry. Here, we evidence that CT dynamics can be altered by multi-layered hyperbolic metamaterial (HMM) substrates. Taking triphenylene:perylene diimide dyad supramolecular self-assemblies as a model system, we reveal longer-lived CT states in the presence of HMM structures, with both charge separation and recombination characteristic times increased by factors of 2.4 and 1.7-that is, relative variations of 140 and 73%, respectively. To rationalize these experimental results in terms of driving force, we successfully introduce image dipole interactions in Marcus theory. The non-local effect herein demonstrated is directly linked to the number of metal-dielectric pairs, can be formalized in the dielectric permittivity, and is presented as a solid analogue to local solvent polarity effects. This model and extra PH3T:PC60BM results show the generality of this non-local phenomenon and that a wide range of kinetic tailoring opportunities can arise from substrate engineering. This work paves the way toward the design of artificial substrates to control CT dynamics of interest for applications in optoelectronics and chemistry.
RSC Advances | 2016
Kwang Jin Lee; J. H. Woo; Yiming Xiao; E. S. Kim; Leszek Mateusz Mazur; David Kreher; André Jean Attias; Katarzyna Matczyszyn; Marek Samoc; Benoît Heinrich; Stéphane Méry; Frédéric Fages; Loic Mager; Anthony D'Aléo; J. W. Wu; Fabrice Mathevet; Pascal André; Jean-Charles Ribierre
The photophysical properties of donor–acceptor (D–A) and donor–acceptor–donor (D–A–D) liquid crystalline dyads and triads based on two different discotic mesogens are examined in thin films by steady-state optical spectroscopy and subpicosecond transient absorption measurements. In these systems, triphenylene and perylene bisimide units are covalently linked by flexible decyloxy chain(s) and act as an electron donor (D) and acceptor (A), respectively. These discotic liquid-crystalline systems form well-separated D and A π-stacked columnar structures in thin films. The absorption spectra of the films indicate an aggregation of the perylene bisimide and triphenylene moieties along the columns. Steady-state photoluminescence measurements show a strong fluorescence quenching that is mainly attributed to a photo-induced charge transfer process taking place between the triphenylene and perylene bisimide units. Subpicosecond transient absorption measurements show that the photoinduced charge transfer (CT) states in the dyad and triad films are formed within 0.3 ps and recombine on a 150–360 ps time scale. In addition, a correlation between the dynamics of the charge recombination process and the spacing distances between D and A units can be established in the dyad and triad films. This study provides important information on the relationship between molecular packing and the charge transfer properties in such self-organized D and A columnar nanostructures.
Proceedings of SPIE | 2015
Jeong-Weon Wu; Y. U. Lee; Eun Young Choi; E. S. Kim; J. H. Woo; Boyoung Kang; J. Kim; Byung Cheol Park; Taeyoon Hong; Jae-Hoon Kim
We experimentally demonstrate a classical analogue of double Fano resonances in a planar composite metamaterial possessing tripod plasmonic resonances, where a common subradiant dipole corresponding to the dark mode is coupled with two superradient dipoles corresponding to two bright modes. The composite metamaterial is structured such that four-rod resonators (FRR) are embedded inside double-split ring resonators (DSRR) superlattice. Two dipole resonances of DSRR are superradiant modes and one dipole resonance of FRR is subradiant mode. Proximity of the inner diameter of DSRR and the rod-length of FRR permits near field coherent couplings, and the composite metamaterial is a tripod metamaterial system possessing two superradiant dipole resonances of DSRR coupled coherently with one common subradiant dipole resonance of FRR in near field, similar to a tripod atomic system with four atomic levels coupled coherently by coherent optical fields. Important finding is that double Fano resonances in the composite metamaterial are correlated, showing up as a transfer of the absorbed power from one superradiant dipole to the other superradient dipole in DSRR. The general feature of plasmonic Fano resonance is examined where both superradiant and subradiant oscillators are externally driven. Analysis based on two coupled oscillators model leads to the fact that the characteristic asymmetric Fano resonance formula of plasmonic structure is kept the same with a modication in the asymmetry parameter q.
conference on lasers and electro optics | 2013
Y. U. Lee; Eun Young Choi; E. S. Kim; J. H. Woo; Boyoung Kang; J. Kim; Byung Cheol Park; J. W. Wu
By embedding polarization-independent four-rod resonators into polarization-dependent double-split ring resonator superlattice metamaterial, a polarization-dependent Fano resonance is experimentally demonstrated in THz regime. A finite-difference time domain simulation shows that a destructive coherent coupling between radiative bright dipole mode in double split ring resonator and non-radiative dark anti-dipole mode in four-rod resonators is responsible for Fano resonance.