Ebbe Toftgaard Poulsen
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ebbe Toftgaard Poulsen.
Journal of Proteome Research | 2012
Thomas F. Dyrlund; Ebbe Toftgaard Poulsen; Carsten Scavenius; Camilla Lund Nikolajsen; Ida B. Thøgersen; Henrik Vorum; Jan J. Enghild
Diseases of the cornea are common and refer to conditions like infections, injuries and genetic defects. Morphologically, many corneal diseases affect only certain layers of the cornea and separate analysis of the individual layers is therefore of interest to explore the basic molecular mechanisms involved in corneal health and disease. In this study, the three main layers including, the epithelium, stroma and endothelium of healthy human corneas were isolated. Prior to analysis by LC–MS/MS the proteins from the different layers were either (i) separated by SDS-PAGE followed by in-gel trypsinization, (ii) in-solution digested without prior protein separation or, (iii) in-solution digested followed by cation exchange chromatography. A total of 3250 unique Swiss-Prot annotated proteins were identified in human corneas, 2737 in the epithelium, 1679 in the stroma, and 880 in the endothelial layer. Of these, 1787 proteins have not previously been identified in the human cornea by mass spectrometry. In total, 771 proteins were quantified, 157 based on in-solution digestion and 770 based on SDS-PAGE separation followed by in-gel digestion of excised gel pieces. Protein analysis showed that many of the identified proteins are plasma proteins involved in defense responses.
Human Reproduction | 2014
Thomas F. Dyrlund; Kirstine Kirkegaard; Ebbe Toftgaard Poulsen; Kristian W. Sanggaard; Johnny Hindkjær; Jørgen Kjems; Jan J. Enghild; Hans Jakob Ingerslev
STUDY QUESTION Which non-declared proteins (proteins not listed on the composition list of the product data sheet) are present in unconditioned commercial embryo culture media? SUMMARY ANSWER A total of 110 non-declared proteins were identified in unconditioned media and between 6 and 8 of these were quantifiable and therefore represent the majority of the total protein in the media samples. WHAT IS KNOWN ALREADY There are no data in the literature on what non-declared proteins are present in unconditioned (fresh media in which no embryos have been cultured) commercial embryo media. STUDY DESIGN, SIZE, DURATION The following eight commercial embryo culture media were included in this study: G-1 PLUS and G-2 PLUS G5 Series from Vitrolife, Sydney IVF Cleavage Medium and Sydney IVF Blastocyst Medium from Cook Medical and EmbryoAssist, BlastAssist, Sequential Cleav and Sequential Blast from ORIGIO. Two batches were analyzed from each of the Sydney IVF media and one batch from each of the other media. All embryo culture media are supplemented by the manufacturers with purified human serum albumin (HSA 5 mg/ml). The purified HSA (HSA-solution from Vitrolife) and the recombinant human albumin supplement (G-MM from Vitrolife) were also analyzed. PARTICIPANTS/MATERIALS, SETTING, METHODS For protein quantification, media samples were in-solution digested with trypsin and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). For in-depth protein identification, media were albumin depleted, dialyzed and concentrated before sodium dodecyl sulfate polyacrylamide gel electrophoresis. The gel was cut into 14 slices followed by in-gel trypsin digestion, and analysis by LC-MS/MS. Proteins were further investigated using gene ontology (GO) terms analysis. MAIN RESULTS AND THE ROLE OF CHANCE Using advanced mass spectrometry and high confidence criteria for accepting proteins (P < 0.01), a total of 110 proteins other than HSA were identified. The average HSA content was found to be 94% (92-97%) of total protein. Other individual proteins accounted for up to 4.7% of the total protein. Analysis of purified HSA strongly suggests that these non-declared proteins are introduced to the media when the albumin is added. GO analysis showed that many of these proteins have roles in defence pathways, for example 18 were associated with the innate immune response and 17 with inflammatory responses. Eight proteins have been reported previously as secreted embryo proteins. LIMITATIONS, REASONS FOR CAUTION For six of the commercial embryo culture media only one batch was analyzed. However, this does not affect the overall conclusions. WIDER IMPLICATIONS OF THE FINDINGS The results showed that the HSA added to IVF media contained many other proteins and that the amount varies from batch to batch. These variations in protein profiles are problematic when attempting to identify proteins derived from the embryos. Therefore, when studying the embryo secretome and analyzing conditioned media with the aim of finding potential biomarkers that can distinguish normal and abnormal embryo development, it is important that the medium used in the experimental and control groups is from the same batch. Furthermore, the proteins present in unconditioned media could potentially influence embryonic development, gestation age, birthweight and perhaps have subsequent effects on health of the offspring. STUDY FUNDING/COMPETING INTERESTS The study was supported by the Danish Agency for Science, Technology and Innovation. Research at the Fertility Clinic, Aarhus University Hospital is supported by an unrestricted grant from Merck Sharp & Dohme Corp and Ferring. The authors declare no conflicts of interest.
Proteomics | 2012
Thomas F. Dyrlund; Ebbe Toftgaard Poulsen; Carsten Scavenius; Kristian W. Sanggaard; Jan J. Enghild
Data processing and analysis of proteomics data are challenging and time consuming. In this paper, we present MS Data Miner (MDM) (http://sourceforge.net/p/msdataminer), a freely available web‐based software solution aimed at minimizing the time required for the analysis, validation, data comparison, and presentation of data files generated in MS software, including Mascot (Matrix Science), Mascot Distiller (Matrix Science), and ProteinPilot (AB Sciex). The program was developed to significantly decrease the time required to process large proteomic data sets for publication. This open sourced system includes a spectra validation system and an automatic screenshot generation tool for Mascot‐assigned spectra. In addition, a Gene Ontology term analysis function and a tool for generating comparative Excel data reports are included. We illustrate the benefits of MDM during a proteomics study comprised of more than 200 LC‐MS/MS analyses recorded on an AB Sciex TripleTOF 5600, identifying more than 3000 unique proteins and 3.5 million peptides.
Journal of Proteome Research | 2014
Ebbe Toftgaard Poulsen; Thomas F. Dyrlund; Kasper Runager; Carsten Scavenius; Toke P. Krogager; Peter Højrup; Ida B. Thøgersen; Kristian W. Sanggaard; Henrik Vorum; Jesper Hjortdal; Jan J. Enghild
Fuchs’ endothelial corneal dystrophy (FECD) is a major corneal disorder affecting the innermost part of the cornea, leading to visual impairment. As the morphological changes in FECD are mainly observed in the extracellular matrix of the Descemet’s membrane/endothelial layer, we determined the protein profiles of diseased and control tissues using two relative quantitation MS methods. The first quantitation method, based on the areas of the extracted ion chromatograms, quantified the 51 and 48 most abundant proteins of the Descemet’s membrane/endothelial layer in patient and control tissues, respectively, of which 10 were significantly regulated. The results indicated that the level of type VIII collagen was unaltered even though the protein previously has been shown to be implicated in familial early-onset forms of the disease. Using the second relative quantitation method, iTRAQ, we identified 22 differentially regulated proteins, many of which are extracellular proteins known to be involved in proper assembly of the basement membrane in other tissues. In total, 26 differentially regulated proteins were identified, of which 6 proteins were regulated in both methods. These results support that the morphological changes observed in FECD are caused in part by an aberrant assembly of the extracellular matrix within the Descemet’s membrane/endothelial layer.
Journal of Biological Chemistry | 2014
Camilla Lund Nikolajsen; Thomas F. Dyrlund; Ebbe Toftgaard Poulsen; Jan J. Enghild; Carsten Scavenius
Background: Coagulation factor XIIIa (FXIIIa) catalyzes cross-linking of Gln and Lys residues during coagulation. Results: A total of 147 FXIIIa substrates were identified in human plasma, and 48 of these were incorporated into the clot. Conclusion: These results indicate that FXIIIa is involved in extensive functionalization of the plasma clot. Significance: We present new insights into roles of FXIIIa in physiological and pathological processes. Coagulation factor XIII (FXIII) is a transglutaminase with a well defined role in the final stages of blood coagulation. Active FXIII (FXIIIa) catalyzes the formation of ϵ-(γ-glutamyl)lysine isopeptide bonds between specific Gln and Lys residues. The primary physiological outcome of this catalytic activity is stabilization of the fibrin clot during coagulation. The stabilization is achieved through the introduction of cross-links between fibrin monomers and through cross-linking of proteins with anti-fibrinolytic activity to fibrin. FXIIIa additionally cross-links several proteins with other functionalities to the clot. Cross-linking of proteins to the clot is generally believed to modify clot characteristics such as proteolytic susceptibility and hereby affect the outcome of tissue damage. In the present study, we use a proteomic approach in combination with transglutaminase-specific labeling to identify FXIIIa plasma protein substrates and their reactive residues. The results revealed a total of 147 FXIIIa substrates, of which 132 have not previously been described. We confirm that 48 of the FXIIIa substrates were indeed incorporated into the insoluble fibrin clot during the coagulation of plasma. The identified substrates are involved in, among other activities, complement activation, coagulation, inflammatory and immune responses, and extracellular matrix organization.
Proteomics Clinical Applications | 2014
Ebbe Toftgaard Poulsen; Kasper Runager; Michael W. Risør; Thomas F. Dyrlund; Carsten Scavenius; Henrik Karring; Jeppe Praetorius; Henrik Vorum; Daniel E. Otzen; Gordon K. Klintworth; Jan J. Enghild
In this study, we investigated whether the phenotypic difference observed between two lattice corneal dystrophy type 1 (LCD type 1) cases caused by either a single A546D substitution or an A546D/P551Q double substitution in TGFBIp (transforming growth factor beta induced protein) can be ascribed to (i) a difference in the proteomes of corneal amyloid deposits, (ii) altered proteolysis of TGFBIp, or (iii) structural changes of TGFBIp introduced by the P551Q amino acid substitution.
Free Radical Biology and Medicine | 2010
Steen V. Petersen; Ida B. Thøgersen; Zuzana Valnickova; Morten Nielsen; Jane S. Petersen; Ebbe Toftgaard Poulsen; Christian Jacobsen; Tim D. Oury; Søren K. Moestrup; James D. Crapo; Niels Chr. Nielsen; Torsten Nygaard Kristensen; Jan J. Enghild
In this study, we show that human extracellular superoxide dismutase (EC-SOD) binds to low-density lipoprotein receptor-related protein (LRP). This interaction is most likely responsible for the removal of EC-SOD from the blood circulation via LRP expressed in liver tissue. The receptor recognition site was located within the extracellular matrix-binding region of EC-SOD. This region encompasses the naturally occurring Arg213Gly amino acid substitution, which affects the affinity of EC-SOD for ligands in the extracellular space. Interestingly, the binding between LRP and Arg213Gly EC-SOD was significantly reduced, thus clarifying the observation that hetero- or homozygous carriers present with a significant increase in EC-SOD in their blood. On the basis of our results, we speculate that EC-SOD synthesized locally in tissues diffuses slowly into the circulation, from where it is removed by binding to LRP present in the liver. The interaction between LRP and EC-SOD is thus likely to be important for maintaining redox balance in the circulation.
Journal of Biological Chemistry | 2016
Kirsten Gade Malmos; Morten Bjerring; Christian Moestrup Jessen; Erik H. Nielsen; Ebbe Toftgaard Poulsen; Gunna Christiansen; Thomas Vosegaard; Troels Skrydstrup; Jan J. Enghild; Jan Skov Pedersen; Daniel E. Otzen
Glycosaminoglycans (GAGs) bind all known amyloid plaques and help store protein hormones in (acidic) granular vesicles, but the molecular mechanisms underlying these important effects are unclear. Here we investigate GAG interactions with the peptide hormone salmon calcitonin (sCT). GAGs induce fast sCT fibrillation at acidic pH and only bind monomeric sCT at acidic pH, inducing sCT helicity. Increasing GAG sulfation expands the pH range for binding. Heparin, the most highly sulfated GAG, binds sCT in the pH interval 3–7. Small angle x-ray scattering indicates that sCT monomers densely decorate and pack single heparin chains, possibly via hydrophobic patches on helical sCT. sCT fibrillates without GAGs, but heparin binding accelerates the process by decreasing the otherwise long fibrillation lag times at low pH and accelerates fibril growth rates at neutral pH. sCT·heparin complexes form β-sheet-rich heparin-covered fibrils. Solid-state NMR reveals that heparin does not alter the sCT fibrillary core around Lys11 but makes changes to Val8 on the exterior side of the β-strand, possibly through contacts to Lys18. Thus GAGs significantly modulate sCT fibrillation in a pH-dependent manner by interacting with both monomeric and aggregated sCT.
Investigative Ophthalmology & Visual Science | 2015
David G. Courtney; Ebbe Toftgaard Poulsen; Susan Kennedy; Johnny Moore; Sarah D. Atkinson; Eleonora Maurizi; M. Andrew Nesbit; C.B. Tara Moore; Jan J. Enghild
PURPOSE Transforming growth factor beta-induced (TGFBI)-related dystrophies constitute the most common heritable forms of corneal dystrophy worldwide. However, other than the underlying genotypes of these conditions, a limited knowledge exists of the exact pathomechanisms of these disorders. This study expands on our previous research investigating dystrophic stromal aggregates, with the aim of better elucidating the pathomechanism of two conditions arising from the most common TGFBI mutations: granular corneal dystrophy type 1 (GCD1; R555W) and lattice corneal dystrophy type 1 (LCD1; R124C). METHODS Patient corneas with GCD1 and LCD1 were stained with hematoxylin and eosin and Congo red to visualize stromal nonamyloid and amyloid deposits, respectively. Laser capture microdissection was used to isolate aggregates and extracted protein was analyzed by mass spectrometry. Proteins were identified and their approximate abundances were determined. Spectra of TGFBIp peptides were also recorded and quantified. RESULTS In total, three proteins were found within GCD1 aggregates that were absent in the healthy control corneal tissue. In comparison, an additional 18 and 24 proteins within stromal LCD1 and Bowmans LCD1 deposits, respectively, were identified. Variances surrounding the endogenous cleavage sites of TGFBIp were also noted. An increase in the number of residues experiencing cleavage was observed in both GCD1 aggregates and LCD1 deposits. CONCLUSIONS The study reveals previously unknown differences between the protein composition of GCD1 and LCD1 aggregates, and confirms the presence of the HtrA1 protease in LCD1-amyloid aggregates. In addition, we find mutation-specific differences in the processing of mutant TGFBIp species, which may contribute to the variable phenotypes noted in TGFBI-related dystrophies.
International Journal of Molecular Sciences | 2015
Ebbe Toftgaard Poulsen; Agnete Larsen; Alen Zollo; Arne Lund Jørgensen; Kristian W. Sanggaard; Jan J. Enghild; Carmela Matrone
The Amyloid Precursor Protein (APP) has been extensively studied for its role as the precursor of the β-amyloid protein (Aβ) in Alzheimer’s disease (AD). However, our understanding of the normal function of APP is still patchy. Emerging evidence indicates that a dysfunction in APP trafficking and degradation can be responsible for neuronal deficits and progressive degeneration in humans. We recently reported that the Y682 mutation in the 682YENPTY687 domain of APP affects its binding to specific adaptor proteins and leads to its anomalous trafficking, to defects in the autophagy machinery and to neuronal degeneration. In order to identify adaptors that influence APP function, we performed pull-down experiments followed by quantitative mass spectrometry (MS) on hippocampal tissue extracts of three month-old mice incubated with either the 682YENPTY687 peptide, its mutated form, 682GENPTY687 or its phosphorylated form, 682pYENPTY687. Our experiments resulted in the identification of two proteins involved in APP internalization and trafficking: Clathrin heavy chain (hc) and its Adaptor Protein 2 (AP-2). Overall our results consolidate and refine the importance of Y682 in APP normal functions from an animal model of premature aging and dementia. Additionally, they open the perspective to consider Clathrin hc and AP-2 as potential targets for the design and development of new therapeutic strategies.