Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eben S. Cross is active.

Publication


Featured researches published by Eben S. Cross.


Science | 2012

Radiative absorption enhancements due to the mixing state of atmospheric black carbon

Christopher D. Cappa; Timothy B. Onasch; Paola Massoli; Douglas R. Worsnop; T. S. Bates; Eben S. Cross; P. Davidovits; Jani Hakala; K. Hayden; B. T. Jobson; Katheryn R. Kolesar; D. A. Lack; Shao-Meng Li; Daniel Mellon; I. Nuaaman; Jason S. Olfert; Tuukka Petäjä; Patricia K. Quinn; Chen Song; R. Subramanian; Eric J. Williams; Rahul A. Zaveri

Dark Forcing Soot, or black carbon, is a ubiquitous atmospheric pollutant whose warming effect might be second only to carbon dioxide. When black carbon is emitted, it combines with other aerosols to form heterogeneous mixtures. Models have predicted that internal mixing of black carbon with other materials can double the amount of radiation absorbed. Cappa et al. (p. 1078) report that in situ measurements of the enhancement of radiation absorption by these mixed black carbon–containing particles in the atmosphere show a much smaller effect. Thus, many climate models may be overestimating the amount of warming caused by black carbon emissions. Direct measurements show that ambient atmospheric particulate black carbon absorbs less solar radiation than theory suggested. Atmospheric black carbon (BC) warms Earth’s climate, and its reduction has been targeted for near-term climate change mitigation. Models that include forcing by BC assume internal mixing with non-BC aerosol components that enhance BC absorption, often by a factor of ~2; such model estimates have yet to be clearly validated through atmospheric observations. Here, direct in situ measurements of BC absorption enhancements (Eabs) and mixing state are reported for two California regions. The observed Eabs is small—6% on average at 532 nm—and increases weakly with photochemical aging. The Eabs is less than predicted from observationally constrained theoretical calculations, suggesting that many climate models may overestimate warming by BC. These ambient observations stand in contrast to laboratory measurements that show substantial Eabs for BC are possible.


Aerosol Science and Technology | 2007

An Inter-Comparison of Instruments Measuring Black Carbon Content of Soot Particles

Jay G. Slowik; Eben S. Cross; Jeong-Ho Han; P. Davidovits; Timothy B. Onasch; John T. Jayne; Leah R. Williams; Manjula R. Canagaratna; Douglas R. Worsnop; Rajan K. Chakrabarty; Hans Moosmüller; W. P. Arnott; Joshua P. Schwarz; R. S. Gao; D. W. Fahey; Gregory L. Kok; Andreas Petzold

Inter-comparison studies of well-characterized fractal soot particles were conducted using the following four instruments: Aerosol Mass Spectrometer-Scanning Mobility Particle Sizer (AMS-SMPS), Single Particle Soot Photometer (SP2), Multi-Angle Absorption Photometer (MAAP), and Photoacoustic Spectrometer (PAS). These instruments provided measurements of the refractory mass (AMS-SMPS), incandescent mass (SP2) and optically absorbing mass (MAAP and PAS). The particles studied were in the mobility diameter range from 150 nm to 460 nm and were generated by controlled flames with fuel equivalence ratios ranging between 2.3 and 3.5. The effect of organic coatings (oleic acid and anthracene) on the instrument measurements was determined. For uncoated soot particles, the mass measurements by the AMS-SMPS, SP2, and PAS instruments were in agreement to within 15%, while the MAAP measurement of optically-absorbing mass was higher by ∼ 50%. Thin organic coatings (∼ 10 nm) did not affect the instrument readings. A thicker (∼ 50 nm) oleic acid coating likewise did not affect the instrument readings. The thicker (∼60 nm) anthracene coating did not affect the readings provided by the AMS-SMPS or SP2 instruments but increased the reading of the MAAP instrument by ∼ 20% and the reading of the PAS by ∼ 65%. The response of each instrument to the different particle types is discussed in terms of particle morphology and coating material.


Aerosol Science and Technology | 2010

Soot Particle Studies—Instrument Inter-Comparison—Project Overview

Eben S. Cross; Timothy B. Onasch; Adam Ahern; William Wrobel; Jay G. Slowik; Jason S. Olfert; D. A. Lack; Paola Massoli; Christopher D. Cappa; Joshua P. Schwarz; J. Ryan Spackman; D. W. Fahey; Arthur J. Sedlacek; A. Trimborn; John T. Jayne; Andrew Freedman; Leah R. Williams; Nga L. Ng; Claudio Mazzoleni; Manvendra K. Dubey; Benjamin T. Brem; Greg Kok; R. Subramanian; Steffen Freitag; Antony D. Clarke; D. A. Thornhill; Linsey C. Marr; Charles E. Kolb; Douglas R. Worsnop; P. Davidovits

An inter-comparison study of instruments designed to measure the microphysical and optical properties of soot particles was completed. The following mass-based instruments were tested: Couette Centrifugal Particle Mass Analyzer (CPMA), Time-of-Flight Aerosol Mass Spectrometer—Scanning Mobility Particle Sizer (AMS-SMPS), Single Particle Soot Photometer (SP2), Soot Particle-Aerosol Mass Spectrometer (SP-AMS) and Photoelectric Aerosol Sensor (PAS2000CE). Optical instruments measured absorption (photoacoustic, interferometric, and filter-based), scattering (in situ), and extinction (light attenuation within an optical cavity). The study covered an experimental matrix consisting of 318 runs that systematically tested the performance of instruments across a range of parameters including: fuel equivalence ratio (1.8 ≤ φ ≤ 5), particle shape (mass-mobility exponent ( D fm ), 2.0 ≤ D fm ≤ 3.0), particle mobility size (30 ≤ d m ≤ 300 nm), black carbon mass (0.07 ≤ m BC ≤ 4.2 fg) and particle chemical composition. In selected runs, particles were coated with sulfuric acid or dioctyl sebacate (DOS) (0.5 ≤ Δ r ve ≤ 201 nm) where Δ r ve is the change in the volume equivalent radius due to the coating material. The effect of non-absorbing coatings on instrument response was determined. Changes in the morphology of fractal soot particles were monitored during coating and denuding processes and the effect of particle shape on instrument response was determined. The combination of optical and mass based measurements was used to determine the mass specific absorption coefficient for denuded soot particles. The single scattering albedo of the particles was also measured. An overview of the experiments and sample results are presented.


Aerosol Science and Technology | 2007

A Novel Method for Estimating Light-Scattering Properties of Soot Aerosols Using a Modified Single-Particle Soot Photometer

R. S. Gao; Joshua P. Schwarz; K. K. Kelly; D. W. Fahey; L. A. Watts; T. L. Thompson; J. R. Spackman; Jay G. Slowik; Eben S. Cross; Jeong-Ho Han; P. Davidovits; Timothy B. Onasch; Douglas R. Worsnop

A Single-Particle Soot Photometer (SP2) detects black refractory or elemental carbon (EC) in particles by passing them through an intense laser beam. The laser light heats EC in particles causing them to vaporize in the beam. Detection of wavelength-resolved thermal radiation emissions provides quantitative information on the EC mass of individual particles in the size range of 0.2–1 μm diameter. Non-absorbing particles are sized based on the amount of light they scatter from the laser beam. The time series of the scattering signal of a non-absorbing particle is a Gaussian, because the SP2 laser is in the TEM00 mode. Information on the scattering properties of externally and internally mixed EC particles as detected by the SP2 is lost in general, because each particle changes size, shape, and composition as it passes through the laser beam. Thus, scattered light from a sampled EC particle does not yield a full Gaussian waveform. A method for determining the scattering properties of EC particles using a two-element avalanche photodiode (APD) is described here. In this method, the Gaussian scattering function is constructed from the leading edge of the scattering signal (before the particle is perturbed by the laser), the Gaussian width, and the location of the leading edge in the beam derived from the two-element APD signal. The method allows an SP2 to determine the scattering properties of individual EC particles as well as the EC mass. Detection of polystyrene latex spheres, well-characterized EC particles with and without organic coatings, and Mie scattering calculations are used to validate the method.


Aerosol Science and Technology | 2007

Laboratory and Ambient Particle Density Determinations using Light Scattering in Conjunction with Aerosol Mass Spectrometry

Eben S. Cross; Jay G. Slowik; P. Davidovits; J. D. Allan; Douglas R. Worsnop; John T. Jayne; David K. Lewis; Manjula R. Canagaratna; Timothy B. Onasch

A light scattering module has been integrated into the current AMS instrument. This module provides the simultaneous measurement of vacuum aerodynamic diameter (d va) and scattered light intensity (RLS) for all particles sampled by the AMS above ∼180 nm geometric diameter. Particle counting statistics and correlated chemical ion signal intensities are obtained for every particle that scatters light. A single calibration curve converts RLS to an optical diameter (d o). Using the relationship between d va and d o the LS-AMS provides a real-time, per particle measurement of the density of the sampled aerosol particles. The current article is focused on LS-AMS measurements of spherical, non-absorbing aerosol particles. The laboratory characterization of LS-AMS shows that a single calibration curve yields the material density of spherical particles with real refractive indices (n) over a range from 1.41 < n < 1.60 with an accuracy of about ±10%. The density resolution of the current LS-AMS system is also shown to be 10% indicating that externally mixed inorganic/organic aerosol distributions can be resolved. In addition to the single particle measurements of d va and RLS, correlated chemical ion signal intensities are obtained with the quadrupole mass spectrometer. A comparison of the particle mass derived from the physical (RLS and d va) and chemical measurements provides a consistency check on the performance of the LS-AMS. The ability of the LS-AMS instrument to measure the density of ambient aerosol particles is demonstrated with sample results obtained during the Northeast Air Quality Study (NEAQS) in the summer of 2004. †Also Margaret W. Kelly, Professor of Chemistry at Connecticut College, New London, Connecticut, USA.


Aerosol Science and Technology | 2009

Absorption Enhancement of Coated Absorbing Aerosols: Validation of the Photo-Acoustic Technique for Measuring the Enhancement

D. A. Lack; Christopher D. Cappa; Eben S. Cross; Paola Massoli; Adam Ahern; P. Davidovits; Timothy B. Onasch

A photo-acoustic absorption spectrometer (PAS) and a cavity ring down aerosol extinction spectrometer (CRD-AES) were used, in conjunction with Mie Theory, to measure the refractive index (RI) of absorbing polystyrene spheres (APSS). The PAS and CRD-AES were also used to measure the absorption and extinction enhancement after these APSS were coated in oleic acid. The experimental enhancements were then compared to predictions from coated-sphere Mie Theory. The measured absorption and extinction enhancements both agreed with modeled enhancements to within an average of 5%. A filter-based absorption technique (particle soot absorption photometer, PSAP) was also used to measure the absorption by the APSS and showed a significant size-dependent bias, as evidenced by the filter-based method measuring significantly lower absorption for both uncoated and coated APSS compared to the PAS. These results suggest the validity of applying photo-acoustics to measure the absorption enhancement created by semi-volatile atmospheric species coating absorbing particles.


Aerosol Science and Technology | 2007

Measurements of Morphology Changes of Fractal Soot Particles using Coating and Denuding Experiments: Implications for Optical Absorption and Atmospheric Lifetime

Jay G. Slowik; Eben S. Cross; Jeong-Ho Han; Jennifer Kolucki; P. Davidovits; Leah R. Williams; Timothy B. Onasch; John T. Jayne; Charles E. Kolb; Douglas R. Worsnop

Mobility-selected fractal and non-fractal soot particles (mobility diameters d m = 135 to 310 nm) were produced at three controlled fuel equivalence ratios (φ = 2.1, 3.5, and 4.5) by an ethylene/oxygen flame. Oleic acid (liquid) and anthracene (solid) coatings were alternately applied to the particles and removed. Simultaneous measurements with an Aerodyne aerosol mass spectrometer and a scanning mobility particle sizer yielded the particle mass, volume, density, composition, dynamic shape factor, fractal dimension, surface area, and the size and number of the primary spherules forming the fractal aggregate. For a given φ, the diameters of the primary spherules are approximately the same, independent of d m (15 nm, 35 nm, and 55 nm for φ = 2.1, 3.5, and 4.5, respectively). As the coating thickness on a particle increases, the dynamic shape factor decreases but d m remains constant until the particle reaches a spherical (for oleic acid) or non-fractal but irregular (for anthracene) shape. Under some conditions, liquid oleic acid coating causes the internal BC framework to rearrange into a more compact configuration. The surface area of fractal particles is up to 2.4 times greater than that of a sphere with the same d m . Using the surface area determinations, the time for a fractal particle to obtain a monolayer of coating material is compared to that of spheres. If it is assumed that the fractal particle is a sphere with the same d m as the fractal particle, the monolayer coating time is underestimated by a factor of up to 1.7.


Applied Optics | 2007

Light scattering and absorption by fractal-like carbonaceous chain aggregates: comparison of theories and experiment.

Rajan K. Chakrabarty; Hans Moosmüller; W. Patrick Arnott; Mark A. Garro; Jay G. Slowik; Eben S. Cross; Jeong–Ho Han; P. Davidovits; Timothy B. Onasch; Douglas R. Worsnop

This study compares the optical coefficients of size-selected soot particles measured at a wavelength of 870 nm with those predicted by three theories, namely, Rayleigh-Debye-Gans (RDG) approximation, volume-equivalent Mie theory, and integral equation formulation for scattering (IEFS). Soot particles, produced by a premixed ethene flame, were size-selected using two differential mobility analyzers in series, and their scattering and absorption coefficients were measured with nephelometry and photoacoustic spectroscopy. Scanning electron microscopy and image processing techniques were used for the parameterization of the structural properties of the fractal-like soot aggregates. The aggregate structural parameters were used to evaluate the predictions of the optical coefficients based on the three light-scattering and absorption theories. Our results show that the RDG approximation agrees within 10% with the experimental results and the exact electromagnetic calculations of the IEFS theory. Volume-equivalent Mie theory overpredicts the experimental scattering coefficient by a factor of approximately 3.2. The optical coefficients predicted by the RDG approximation showed pronounced sensitivity to changes in monomer mean diameter, the count median diameter of the aggregates, and the geometric standard deviation of the aggregate number size distribution.


Journal of The Air & Waste Management Association | 2010

Evolution of Vehicle Exhaust Particles in the Atmosphere

Manjula R. Canagaratna; Timothy B. Onasch; Ezra C. Wood; Scott C. Herndon; John T. Jayne; Eben S. Cross; Richard C. Miake-Lye; Charles E. Kolb; Douglas R. Worsnop

Abstract Aerosol mass spectrometer (AMS) measurements are used to characterize the evolution of exhaust particulate matter (PM) properties near and downwind of vehicle sources. The AMS provides time-resolved chemically speciated mass loadings and mass-weighted size distributions of nonrefractory PM smaller than 1 μm (NRPM1). Source measurements of aircraft PM show that black carbon particles inhibit nucleation by serving as condensation sinks for the volatile and semi-volatile exhaust gases. Real-world source measurements of ground vehicle PM are obtained by deploying an AMS aboard a mobile laboratory. Characteristic features of the exhaust PM chemical composition and size distribution are discussed. PM mass and number concentrations are used with above-background gas-phase carbon dioxide (CO2) concentrations to calculate on-road emission factors for individual vehicles. Highly variable ratios between particle number and mass concentrations are observed for individual vehicles. NRPM1 mass emission factors measured for on-road diesel vehicles are approximately 50% lower than those from dynamometer studies. Factor analysis of AMS data (FA-AMS) is applied for the first time to map variations in exhaust PM mass downwind of a highway. In this study, above-background vehicle PM concentrations are highest close to the highway and decrease by a factor of 2 by 200 m away from the highway. Comparison with the gas-phase CO2 concentrations indicates that these vehicle PM mass gradients are largely driven by dilution. Secondary aerosol species do not show a similar gradient in absolute mass concentrations; thus, their relative contribution to total ambient PM mass concentrations increases as a function of distance from the highway. FA-AMS of single particle and ensemble data at an urban receptor site shows that condensation of these secondary aerosol species onto vehicle exhaust particles results in spatial and temporal evolution of the size and composition of vehicle exhaust PM on urban and regional scales.


Atmospheric Measurement Techniques Discussions | 2017

Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating measurements

Eben S. Cross; David K. Lewis; Leah R. Williams; Gregory R. Magoon; Michael Kaminsky; Douglas R. Worsnop; John T. Jayne

The environments in which we live, work, and play are subject to enormous variability in air pollutant concentrations. To adequately characterize air quality (AQ), measurements must be fast (real time), scalable, and reliable (with known accuracy, precision, and stability over time). Lower-cost air-quality-sensor technologies offer new opportunities for fast and distributed measurements, but a persistent characterization gap remains when it comes to evaluating sensor performance under realistic environmental sampling conditions. This limits our ability to inform the public about pollution sources and inspire policy makers to address environmental justice issues related to air quality. In this paper, initial results obtained with a recently developed lower-cost air-quality-sensor system are reported. In this project, data were acquired with the ARISense integrated sensor package over a 4.5-month time interval during which the sensor system was co-located with a state-operated (Massachusetts, USA) air quality monitoring station equipped with reference instrumentation measuring the same pollutant species. This paper focuses on validating electrochemical (EC) sensor measurements of CO, NO, NO2, and O3 at an urban neighborhood site with pollutant concentration ranges (parts per billion by volume, ppb; 5 min averages, ±1σ): [CO]= 231± 116 ppb (spanning 84–1706 ppb), [NO]= 6.1± 11.5 ppb (spanning 0–209 ppb), [NO2]= 11.7± 8.3 ppb (spanning 0–71 ppb), and [O3]= 23.2± 12.5 ppb (spanning 0–99 ppb). Through the use of high-dimensional model representation (HDMR), we show that interference effects derived from the variable ambient gas concentration mix and changing environmental conditions over three seasons (sensor flow-cell temperature= 23.4± 8.5 C, spanning 4.1 to 45.2 C; and relative humidity= 50.1± 15.3 %, spanning 9.8–79.9 %) can be effectively modeled for the Alphasense CO-B4, NO-B4, NO2B43F, and Ox-B421 sensors, yielding (5 min average) root mean square errors (RMSE) of 39.2, 4.52, 4.56, and 9.71 ppb, respectively. Our results substantiate the potential for distributed air pollution measurements that could be enabled with these sensors.

Collaboration


Dive into the Eben S. Cross's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas R. Worsnop

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John T. Jayne

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jesse H. Kroll

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. F. Hunter

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge