Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eberhard M. Schröder is active.

Publication


Featured researches published by Eberhard M. Schröder.


Aequationes Mathematicae | 1979

Zur Kennzeichnung der Lorentz-Transformationen

Eberhard M. Schröder

AbstractLet (V, f) be a real Minkowski space of any, not necessarily finite, dimension, and letd be the corresponding distance function (taking negative values for timelike distances). Then the following statement (among others) is proved: If ϕ :V →V is a surjective mapping such that


Journal of Geometry | 1986

Fundamentalsätze der metrischen Geometrie

Eberhard M. Schröder


Journal of Geometry | 1981

Zur Kennzeichnung Fanoscher Affin-Metrischer Geometrien

Eberhard M. Schröder

d(P,Q) = a \Leftrightarrow d(P^\varphi ,Q^\varphi ) = a\forall P,Q \in V


Journal of Geometry | 1980

Zur Kennzeichnung distanztreuer Abbildungen in nichteuklidischen Räumen

Eberhard M. Schröder


Journal of Geometry | 1973

Zur Theorie Subaffiner Inzidenzgruppen

Eberhard M. Schröder

is true for some fixeda εR,a<0, then ϕ is a Lorentz transformation (including a possible translation).


Journal of Geometry | 1991

On mappings preserving orthogonality of non-singular vectors

Burkhard Alpers; Eberhard M. Schröder

For arbitrary quadratic forms, including the cases of characteristic 2 and of infinite dimensions, several affine-metric and projective-metric structures are considered, and the corresponding isomorphisms are determined. As an application, a general fundamental theorem of the miquelian circle geometry is proved.


Journal of Geometry | 1990

Ein einfacher Beweis des Satzes von Alexandroff-Lester

Eberhard M. Schröder

Let V be a vector space over the commutative field K such that char K 2 ∧ 2 ≤ dim V ≤ ∞, and let Q:V → K be a quadratic form of rank ≥ 2. The pair (A(V,K),ξQ), consisting of the affine space A(V,K) and the congruence relation ξQ, defined by (a,b)ξQ (c,d) ⇔ Q(a−b) = Q(c−d) ∀(a,b),(c,d) ∃ V×V, is called an affine-metric fano-space of rank ≥ 2. In this paper, such spaces are characterized by three simple geometrical properties.


Journal of Geometry | 1993

On 0-distance-preserving permutations of affine and projective quadrics

Eberhard M. Schröder

AbstractLet (V,K,Q) be a noneuclidean regular metric vector space, ρ a fixed element of K and ϕ: V → V a bijection such that


Journal of Geometry | 1982

Eine Gruppentheoretisch-Geometrische Kennzeichnung der Projektiv-Metrischen Geometrien

Eberhard M. Schröder


Mathematics Magazine | 2014

A 5-Circle Incidence Theorem

J. Chris Fisher; Eberhard M. Schröder

Q(x - y) = \rho \leftrightarrow Q(x^\phi - y^\phi ) = \rho \forall x,y \in v.

Collaboration


Dive into the Eberhard M. Schröder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge