Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ed Sverko is active.

Publication


Featured researches published by Ed Sverko.


Environmental Science & Technology | 2010

Polychlorinated Biphenyls in Global Air and Surface Soil: Distributions, Air−Soil Exchange, and Fractionation Effect†

Yi-Fan Li; Tom Harner; Li-Yan Liu; Zhi Zhang; Nanqi Ren; Hongliang Jia; Jianmin Ma; Ed Sverko

Polychlorinated biphenyl (PCB) concentrations in air and soil, measured by various research groups from around the world, were compiled and analyzed. Data for air were available from most regions, particularly in Europe and Asia. The average air concentrations (pg/m(3)) for SigmaPCB at background sites were 70 (5.1-170) for Europe, 79 (49-120) for North America, 66 (18-110) for South America, 270 (9-670) for Central America, 59 (17-150) for Asia, and 15 (13-17) for Australia. Data for soils exhibited better global coverage compared to air and were available from most regions. The average soil concentrations (pg/g dry weight) for SigmaPCB at background sites were 7500 (47-97 000) for Europe, 4300 (110-25 000) for North America, 1400 (61-9 500) for South America, 580 (120-2 900) for Asia, 390 (94-620) for Africa, and 280 (140-540) for Australia. Based on available studies where coupled measurements of PCBs in air and soil were made, the equilibrium status of PCBs in the air-soil system was investigated for China, West Midlands of the UK, central and southern Europe, and along a latitudinal transect from the south of the UK to the north of Norway. Differences were observed in plots of the soil-air equilibrium status (expressed as the soil-air fugacity fraction, ff) for different PCB homologues. This was explained by varying contributions from primary and secondary emissions-spatially and temporally. The net effect after several decades of PCB emissions to air, preferential transport of lower molecular weight PCBs through primary and secondary emission, and reductions in emissions to air in recent decades is that the lower molecular weight PCBs have achieved (and in some cases exceeded) soil-air equilibrium in many parts of the world. The exception is remote and background sites that are still dominated by primary sources.


Environmental Science & Technology | 2010

An Asia-Specific Source of Dechlorane Plus: Concentration, Isomer Profiles, and Other Related Compounds

Degao Wang; Meng Yang; Hong Qi; Ed Sverko; Wan-Li Ma; Yi-Fan Li; Mehran Alaee; Eric J. Reiner; Li Shen

The distribution of dechloranes, a group of chlorinated flame retardants, were investigated in air, soil, and sediment around a newly discovered Dechlorane Plus (DP) production facility in China (Anpon). To date, the only known DP manufacturing plant is located in Niagara Falls, NY (OxyChem). Dechloranes including DP, Dechlorane (Mirex), and the recently discovered Dechlorane 602 (Dec 602) were detected in air, soil, and sediment, while Dechlorane 603 and Dechlorane 604 were below detection limit in all matrices. DP air concentrations near the facility ranged from 7737 to 26 734 pg m(-3), the greatest reported thus far. Soil concentrations in the same area for DP, Dechlorane, and Dec 602 were 1490+/-3580 ng g(-1), 81.6+/-96.5 ng g(-1), and 7.24+/-13.2 ng g(-1) dry weight, respectively. Interestingly, lower concentrations of DP (4.93+/-4.34 ng g(-1)), Dechlorane (30.2+/-19.9 ng g(-1)), and Dec 602 (2.14+/-2.23 ng g(-1)) were found in sediment from a nearby canal. Spatial trends of Dechlorane and Dec 602 in soil were similar to DP, implying that the DP manufacturing plant may also be a source of these other flame retardants. DP soil concentrations surrounding the facility decreased by an order of magnitude within 7.5 km. The syn-DP fractional abundance (fsyn) value (0.40) for the commercial DP product manufactured at Anpon was slightly higher than that (0.20-0.36) produced by OxyChem. The fsyn value in most air samples was largely similar to the Chinese commercial DP mixture, while most soil and sediment abundances were lower, suggesting a stereoselective depletion of syn-DP.


Environmental Health Perspectives | 2007

Pesticides in Surface Drinking-Water Supplies of the Northern Great Plains

David B. Donald; Allan J. Cessna; Ed Sverko; Nancy E. Glozier

Background Human health anomalies have been associated with pesticide exposure for people living in rural landscapes in the northern Great Plains of North America. Objective The objective of this study was to investigate the occurrence of 45 pesticides in drinking water from reservoirs in this area that received water primarily from snowmelt and rainfall runoff from agricultural crop lands. Methods Water from 15 reservoirs was sampled frequently during the spring pesticide application period (early May to mid-August) and less frequently for the remainder of the year. Drinking water was sampled in early July. Sample extracts were analyzed for pesticide content using mass spectrometric detection. Results We detected two insecticides and 27 herbicides in reservoir water. Consistent detection of a subset of 7 herbicides suggested that atmospheric deposition, either directly or in rain, was the principal pathway from fields to the reservoirs. However, the highest concentrations and number of herbicides in drinking water were associated with runoff from a localized 133-mm rainfall over 15 days toward the end of spring herbicide application. Water treatment removed from 14 to 86% of individual herbicides. Drinking water contained 3–15 herbicides (average, 6.4). Conclusions We estimated the mean annual calculated concentration of herbicides in drinking water to be 75 ng/L (2,4-dichlorophenoxy)acetic acid, 31 ng/L (2-chloro-4-methylphenoxy)acetic acid, 24 ng/L clopyralid, 11 ng/L dichlorprop, 4 ng/L dicamba, 3 ng/L mecoprop, and 1 ng/L bro-moxynil. The maximum total concentration of herbicides in drinking water was 2,423 ng/L. For the seven herbicides with established drinking water guidelines, all concentrations of the individual chemicals were well below their respective guideline. However, guidelines have not been established for the majority of the herbicides found in drinking water or for mixtures of pesticides.


Environmental Toxicology and Chemistry | 2008

TOXICITY OF HUMAN PHARMACEUTICALS AND PERSONAL CARE PRODUCTS TO BENTHIC INVERTEBRATES

Ève B. Dussault; Vimal K. Balakrishnan; Ed Sverko; Keith R. Solomon; Paul K. Sibley

Despite concerns about potential risks associated with the presence of pharmaceuticals and personal care products (PPCPs) in the environment, few toxicological data address the effects of these compounds. In aquatic systems, which often represent the final repository for PPCPs, increasing toxicological information regarding aquatic biota is improving our capacity to assess potential risks. However, responses of key biota, such as benthic invertebrates, have not been investigated as widely. In the present study, we examined the toxicity of four PPCPs -- the lipid regulator atorvastatin (ATO), the antiepileptic drug carbamazepine (CBZ), the synthetic hormone 17alpha-ethinylestradiol (EE(2)), and the antimicrobial triclosan (TCS) -- to the midge Chironomus tentans and the freshwater amphipod Hyalella azteca in 10-d waterborne exposures. The toxicity of the four compounds varied between 0.20 and 47.3 mg/L (median lethal concentration), with a relative toxicity ranking of TCS > EE(2) > ATO > CBZ. Hyalella azteca was more sensitive than C. tentans to these compounds. The toxicity data were used in a hazard quotient approach to evaluate the risk posed by the four PPCPs to benthic invertebrates and other aquatic organisms. For each compound, a hazard quotient was calculated by dividing the lowest toxicity value by the highest exposure value found in the literature, to which an uncertainty factor was applied. With hazard quotients of 3.55 to 11.5, we conclude that potential risks exist toward benthic invertebrates for the toxicity of TCS and CBZ and that further investigations of these compounds are required to characterize more completely the risks to benthic organisms. In contrast, our data also indicate that considering the low concentrations currently detected in the environment, ATO and EE(2) pose negligible risks to benthic invertebrates.


Environmental Science & Technology | 2011

Concentration and bioaccumulation of dechlorane compounds in coastal environment of northern China.

Hongliang Jia; Yeqing Sun; Xianjie Liu; Meng Yang; Degao Wang; Hong Qi; Li Shen; Ed Sverko; Eric J. Reiner; Yi-Fan Li

Dechloranes, including Dechlorane Plus (DP), Mirex (Dechlorane), Dechlorane 602 (Dec 602), Dechlorane 603 (Dec 603), and Dechlorane 604 (Dec 604), were determined using GC-MSD for water, sediment and oyster samples collected at 15 sampling sites near the Bohai and Huanghai Sea shore area of northern China in 2008. DP and Mirex were detected in most water, sediment, and oyster samples, which indicated widespread distribution of these two compounds. The mean concentrations in water, sediment and oyster samples, respectively, were 1.8 ng/L, 2.9 ng/g dry weight (dw) and 4.1 ng/g wet weight (ww) for total DP, and 0.29 ng/L, 0.90 ng/g dw, and 2.0 ng/g ww for Mirex. Dec 602 and Dec 603 were not detected in water but in small portions of the sediment and oyster samples, showing a low level of contamination by these two chemicals in the region. Strong and significant correlations were found between total DP and Mirex concentrations in water, sediment and oyster samples, probably suggesting similar local sources of these two chemicals. Dec 604 was not found in any samples. The biota-sediment accumulation factor (BSAF) of DP, Mirex, and Dec 602 declined along with the increase of their logarithm of octanol-water partition coefficients (log Kow), possibly indicating that compounds with lower log Kow (like Mirex and Dec 602) accumulated more readily in biota. The mean fractional abundance of syn-DP (fsyn) was 0.34 in water samples, a value lower than that in Chinese commercial mixture (0.41), while the mean fsyn for surface sediment (0.44) and oyster (0.45) samples were higher than technical values. Enrichment of syn-DP in oyster was in agreement with previously reported findings in Great Lakes fish. Enrichment of syn-DP in marine surface sediments, however, is contrary to data reported for fresh water sediments. To our knowledge this is the first report of Dec 602, Dec 603, and Dec 604 in a marine environment and also the first report of Dechloranes in marine biota.


Environmental Pollution | 2012

Atmospheric concentrations of halogenated flame retardants at two remote locations: The Canadian High Arctic and the Tibetan Plateau

Hang Xiao; Li Shen; Yushan Su; Enzo Barresi; Maryl DeJong; Hayley Hung; Ying-Duan Lei; Frank Wania; Eric J. Reiner; Ed Sverko; Shichang Kang

Atmospheric concentrations of halogenated flame retardants (FRs) were monitored for approximately one year at two remote stations, namely Nam Co on the Tibetan Plateau and Alert in the Canadian High Arctic. BDE-47 and 99 were the dominant polybrominated diphenyl ether (PBDE) congeners at both sites. Atmospheric PBDE concentrations in Nam Co were generally lower than those at Alert. While significant seasonal variations were observed for PBDEs at Alert, the FR concentrations at Nam Co showed no significant seasonality, even though air masses originated from distinctly different regions during different seasons. This suggests that FRs in Tibet do not have regional sources, but are reflective of truly global background contamination. Three new FRs, namely 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), 2-ethyl-1-hexyl-2,3,4,5-tetrabromobenzoate (EHTeBB) and bis(2-ethyl-1-hexyl)tetrabromophthalate (TBPH) were detected at relatively high concentrations at both sites. This is the first report of these FRs in the remote global atmosphere and suggests significant potential for long-range atmospheric transport.


Environmental Science & Technology | 2013

Polybrominated Diphenyl Ethers in Air across China: Levels, Compositions, and Gas-Particle Partitioning

Meng Yang; Hong Qi; Hongliang Jia; Nanqi Ren; Yong-Sheng Ding; Wan-Li Ma; Li-Yan Liu; Hayley Hung; Ed Sverko; Yi-Fan Li

Air samples were concurrently collected using high volume air samplers for 24 h every week from September 2008 to August 2009 at 15 sites (11 urban, 1 suburban, and 3 background/rural) across China. Twelve polybrominated diphenyl ether (PBDE) congeners (BDE-17, -28, -47, -66, -85, -99, -100, -138, -153, -154, -183, and -209) were measured. Total PBDE concentrations (∑12PBDEs) in air (gas + particle phases) were in the range of 11.0-838 pg m(-3) with a mean of 232 ± 72 (mean ± SE) pg m(-3). The site with the highest concentration was Guangzhou (838 ± 126 pg m(-3)), followed by Beijing (781 ± 107 pg m(-3)). Significant positive correlations were found between PBDEs levels and urban population (R = 0.69, P < 0.05) and gross industrial output values (R = 0.87, P < 0.001) as well. BDE-209 was the dominating congener with the contribution of 64 ± 23% to ∑12PBDEs, followed by BDE-47(8 ± 8%) and -99(6 ± 5%) at all urban and suburban sites. At background/rural sites, however, BDE-47 was the dominating congener, followed by BDE-99, together accounting for 52 ± 21% of ∑12PBDEs, while BDE-209 was only 11 ± 2%. It was found that PBDEs at the 15 sites showed a primary distribution and fractionation pattern. This study produced more than 700 pairs of air samples in gaseous and particulate phases with a wide temperature range of ∼60 °C, providing a good opportunity to investigate gas-particle partitioning for individual PBDE congeners. The results of gas-particle partitioning analysis for PBDEs using both subcooled-liquid-vapor pressure (PL)-based and octanol-air partition coefficient (KOA)-based models indicated that PBDEs in air at all sampling sites had not reached equilibrium because the slope values (mO) in the KOA-based equation and the opposite slope values (mP) in the PL-based equation at all 15 sampling sites were less than 1. It also found that both mO and -mP were significantly and positively correlated with the annual average temperatures of sampling sites and also significantly and negatively correlated with the mole masses of PBDE congeners, indicating a general trend that the higher the temperature at the sampling site and the lower the mole mass of the PBDE congeners are, the closer to the equilibrium the congeners approach and vice versa. To our knowledge, this is the first study to report the correlations of the slope values for both the KOA-based and PL-based equations with temperatures at sampling sites and mole masses for individual PBDE congeners.


Chemosphere | 2011

Spatial and seasonal variations in atrazine and metolachlor surface water concentrations in Ontario (Canada) using ELISA

Jonathan D. Byer; John Struger; Ed Sverko; Paul Klawunn; Aaron Todd

Concerns regarding the impacts of pesticides on aquatic species and drinking water sources have increased demands on water quality monitoring programs; however the costs of sample analysis can be prohibitive. In this study we investigated enzyme-linked immunosorbent assay (ELISA) as a cost-effective, high through-put method for measuring pesticide concentrations in surface waters. Seven hundred and thirty-nine samples from 158 locations throughout Ontario were analysed for atrazine and metolachlor from April to October 2007. Concentrations ranged from <0.1 to 3.91 μg L(-1) (median=0.12 μg L(-1)) for atrazine and from <0.1 to 1.83 μg L(-1) (median=0.09 μg L(-1)) for metolachlor. Peak concentrations occurred in late spring/early summer, in rural agricultural locations, and decreased over the remainder of the growing season for both herbicides. About 3% of the samples that had ELISA results occurring above the limit of quantification (0.10 μg L(-1)) were evaluated against gas chromatography-mass spectrometry (GC-MS). Linear regression analysis revealed a R(2) value of 0.88 and 0.39, for atrazine and metolachlor, respectively. ELISA tended to overestimate concentrations for atrazine and metolachlor, most likely because the ELISA kits also detect their metabolites. Atrazine data suggest that ELISA may be used complementary with GC-MS analysis to enhance the spatial and temporal resolution of a water quality monitoring study. The commercially available metolachlor ELISA kit requires further investigation. ELISA may be used to detect atrazine and metolachlor in surface water samples, but it is not recommended as a quantitative replacement for traditional analytical methods.


Chemosphere | 2008

Structure characterization and thermal stabilities of the isomers of the brominated flame retardant 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane

Gilles Arsenault; Alan J. Lough; Chris H. Marvin; Alan J. McAlees; Robert McCrindle; Gordia MacInnis; Kerri Pleskach; Dave Potter; Nicole Riddell; Ed Sverko; Sheryl A. Tittlemier; Gregg T. Tomy

1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH) is used primarily as an additive flame retardant. 1H NMR spectroscopy and an X-ray structure determination have revealed that a technical mixture consists largely of two (of the four possible) diastereomers, rac-(1R,2R)-1,2-dibromo-(4S)-4-((1S)-1,2-dibromoethyl)cyclohexane (alpha-TBECH) and rac-(1R,2R)-1,2-dibromo-(4S)-4-((1R)-1,2-dibromoethyl)cyclohexane (beta-TBECH), in a mole ratio of approximately 1:1. The two other possible isomers, gamma- and delta-TBECH, were not detected in a technical mixture. The TBECH isomers are thermally sensitive and can easily interconvert at temperatures of 125 degrees C. A thermal equilibrium mixture of alpha-, beta-, gamma- and delta-TBECH consists of approximately 33%, 33%, 17% and 17% of these isomers, respectively. Separation of all four TBECH diastereomers, with minimal thermal interconversion of the isomers, was achieved by careful selection of GC-capillary column length and injector temperature. Although technical TBECH does not contain the gamma- and delta-isomers, they may still be relevant environmental contaminants since manufacturing processes utilize thermal processes which may induce their formation.


Chemosphere | 2011

Concentrations and sources of Dechlorane Plus in sewage sludge.

Adrián de la Torre; Ed Sverko; Mehran Alaee; María Ángeles Martínez

Sewage sludge from 31 urban Spanish wastewater treatment plants (WWTP) was analyzed for the emerging halogenated flame retardant Dechlorane Plus (DP). Concentrations of the two major isomers in the technical mixture, syn and anti, ranged between 0.903-19.2 and 1.55-75.1ngg(-1) dry weight, respectively. Overall, concentrations of DP were lower than those of polybrominated diphenyl ethers (PBDEs) (9.10-995ngg(-1) dry weight) and this is likely related to the higher usage of brominated flame retardants. The average ratio of the syn isomer to total DP (f(syn)) was 0.28±0.05, which is similar to that of the commercial mixture. Comparing different wastewater treatment methods, we found lower concentrations in those using biological nitrogen and phosphorous elimination, suggesting that DP is susceptible to microbial degradation and that anti-DP is more so, given the enrichment of syn-DP in the sewage sludge. Principal components analysis revealed significant positive correlation (r=0.619, p<0.05) between total DP concentrations with the contribution of industrial input to waste streams. This implies release of DP is related to industrial activity, likely stemming from the use of the technical product during manufacture of consumer goods. However, use and disposal of products containing DP could not be dismissed. According to our knowledge, this is the first report on DP in WWTP sludge.

Collaboration


Dive into the Ed Sverko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Degao Wang

Dalian Maritime University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric J. Reiner

Ontario Ministry of the Environment

View shared research outputs
Researchain Logo
Decentralizing Knowledge