Yushan Su
Environment Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yushan Su.
Science of The Total Environment | 2010
Hayley Hung; Roland Kallenborn; Knut Breivik; Yushan Su; Eva Brorström-Lundén; Kristin Olafsdottir; Johanna M Thorlacius; Sirkka Leppänen; Rossana Bossi; Henrik Skov; Stein Manø; Gregory W. Patton; Gary A. Stern; Ed Sverko; Phil Fellin
Continuous and comparable atmospheric monitoring programs to study the transport and occurrence of persistent organic pollutants (POPs) in the atmosphere of remote regions is essential to better understand the global movement of these chemicals and to evaluate the effectiveness of international control measures. Key results from four main Arctic research stations, Alert (Canada), Pallas (Finland), Storhofdi (Iceland) and Zeppelin (Svalbard/Norway), where long-term monitoring have been carried out since the early 1990s, are summarized. We have also included a discussion of main results from various Arctic satellite stations in Canada, Russia, US (Alaska) and Greenland which have been operational for shorter time periods. Using the Digital Filtration temporal trend development technique, it was found that while some POPs showed more or less consistent declines during the 1990s, this reduction is less apparent in recent years at some sites. In contrast, polybrominated diphenyl ethers (PBDEs) were still found to be increasing by 2005 at Alert with doubling times of 3.5 years in the case of deca-BDE. Levels and patterns of most POPs in Arctic air are also showing spatial variability, which is typically explained by differences in proximity to suspected key source regions and long-range atmospheric transport potentials. Furthermore, increase in worldwide usage of certain pesticides, e.g. chlorothalonil and quintozene, which are contaminated with hexachlorobenzene (HCB), may result in an increase in Arctic air concentration of HCB. The results combined also indicate that both temporal and spatial patterns of POPs in Arctic air may be affected by various processes driven by climate change, such as reduced ice cover, increasing seawater temperatures and an increase in biomass burning in boreal regions as exemplified by the data from the Zeppelin and Alert stations. Further research and continued air monitoring are needed to better understand these processes and its future impact on the Arctic environment.
Environmental Pollution | 2012
Hang Xiao; Li Shen; Yushan Su; Enzo Barresi; Maryl DeJong; Hayley Hung; Ying-Duan Lei; Frank Wania; Eric J. Reiner; Ed Sverko; Shichang Kang
Atmospheric concentrations of halogenated flame retardants (FRs) were monitored for approximately one year at two remote stations, namely Nam Co on the Tibetan Plateau and Alert in the Canadian High Arctic. BDE-47 and 99 were the dominant polybrominated diphenyl ether (PBDE) congeners at both sites. Atmospheric PBDE concentrations in Nam Co were generally lower than those at Alert. While significant seasonal variations were observed for PBDEs at Alert, the FR concentrations at Nam Co showed no significant seasonality, even though air masses originated from distinctly different regions during different seasons. This suggests that FRs in Tibet do not have regional sources, but are reflective of truly global background contamination. Three new FRs, namely 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), 2-ethyl-1-hexyl-2,3,4,5-tetrabromobenzoate (EHTeBB) and bis(2-ethyl-1-hexyl)tetrabromophthalate (TBPH) were detected at relatively high concentrations at both sites. This is the first report of these FRs in the remote global atmosphere and suggests significant potential for long-range atmospheric transport.
AMBIO: A Journal of the Human Environment | 2004
Frank Wania; Yushan Su
Abstract Due to the wide range of their physical-chemical properties, polychlorinated biphenyls (PCBs) have played an important role in the derivation of the global fractionation hypothesis, which predicts changes in the composition of persistent organic pollutant mixtures with latitude. Recent historical emission estimates, the derivation of an internally consistent property data set, in combination with a zonally averaged global fate and transport model, allow a quantitative investigation of the compositional shifts PCBs experience as a function of environmental compartment, latitude and time. Model simulations reproduce the higher relative abundance of lighter PCB congeners with increasing latitude, observed in air and soil, and quantify the relative importance of partitioning, persistence and emissions in establishing PCB patterns. Compositional variations consistent with global fractionation, as well as inverted concentration profiles with higher levels in the Arctic than at lower latitudes, are consistent with only minor fractions of the global PCB inventory being transferred northward.
Environmental Pollution | 2010
Yushan Su; Hayley Hung
Measurements of semi-volatile organic chemicals (SVOCs) were compared among 21 laboratories from 7 countries through the analysis of standards, a blind sample, an air extract, and an atmospheric dust sample. Measurement accuracy strongly depended on analytes, laboratories, and types of standards and samples. Intra-laboratory precision was generally good with relative standard deviations (RSDs) of triplicate injections <10% and with median differences of duplicate samples between 2.1 and 22%. Inter-laboratory variability, measured by RSDs of all measurements, was in the range of 2.8-58% in analyzing standards, and 6.9-190% in analyzing blind sample and air extract. Inter-laboratory precision was poorer when samples were subject to cleanup processes, or when SVOCs were quantified at low concentrations. In general, inter-laboratory differences up to a factor of 2 can be expected to analyze atmospheric SVOCs. When comparing air measurements from different laboratories, caution should be exercised if the data variability is less than the inter-laboratory differences.
Environmental Science & Technology | 2013
Jianmin Ma; Ed Sverko; Yushan Su; Junhua Zhang; Hong Gao
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were measured in hail samples collected during a storm that occurred on a spring morning in Toronto, Canada. The presence of these organic chemicals in hail suggests that clouds likely provide an atmospheric transport pathway for these substances in the free atmosphere. Results reported here may carry significant implications for atmospheric transport, mass balance, tropospheric cold trapping, and environmental fate of organic chemicals. Backward trajectories along with measured and modeled cloud cover show that clouds causing the hail event were formed and advected from the midwestern and southeastern United States. After being emitted to the atmosphere, the organic chemicals were likely lifted by atmospheric ascending motions to a higher atmospheric elevation and partitioned onto clouds. These clouds then carry the organic chemicals to a downwind location where they are deposited to the ground surface via precipitation. We found that the organic chemicals with high solubility and vapor pressure tend to partition into clouds through sorption to cloudwater droplets and ice particles. It was found that approximately 7-30% of pyrene could be sorbed into cloudwater droplets and ice particles in this hail event at the expense of reduced gas-phase concentrations.
Environmental Chemistry | 2013
John N. Westgate; Uwayemi M. Sofowote; Pat Roach; Phil Fellin; Ivy D'Sa; Ed Sverko; Yushan Su; Hayley Hung; Frank Wania
Environmental context Some long-lived organic contaminants, such as chlorinated organics, brominated flame retardants and polycyclic aromatic hydrocarbons, can undergo transport through the atmosphere to remote regions. A series of measurements of these compounds taken over almost 3 years in the air at a remote location was combined with meteorological data to try to reveal potential source areas. After adjusting several parameters to optimise the method’s ability to identify sources it was found that for most contaminants no definitive sources are revealed. Abstract A suite of brominated flame retardants, chlorinated organic pesticides and some metabolites thereof were analysed in week-long and day-long air samples collected at Little Fox Lake in Canada’s Yukon Territory from 2007 to 2009. Several trajectory-based methods for source region identification were applied to this dataset, as well as to polycyclic aromatic hydrocarbon (PAH) concentrations in those same samples reported previously. A type of concentration weighted trajectory (CWT) analysis, using a modified grid to avoid difficulties near the Earth’s poles, and removing trajectory endpoints at altitudes greater than 700m did not identify distinct source regions for most analytes. Decreasing the spatial resolution of the grid made interpretation simpler but reinforced patterns that may have stemmed from single trajectories. The potential source contribution function (PSCF) is similar to CWT but treats the concentration data categorically, rather than numerically. PSCF provides more distinct results, highlighting the Arctic Ocean as a potential source of para,para′-dichlorodiphenyldichloroethene and both northern Siberia and Canada’s Yukon and Northwest Territories as potential sources of PAHs. To simulate the uncertainty associated with individual trajectories, a set of trajectories was also generated for six points surrounding the sampling station and included in the trajectory analyses. This had the effect of smoothing the CWT and PSCF values for those analytes with no clearly definable sources, and highlighting the source regions for the two that did. For the bulk of the analytes discussed here, Little Fox Lake is well positioned to act as a background monitoring site.
Environmental Science & Technology | 2018
Jonathan M. Wang; Cheol-Heon Jeong; Nathan Hilker; Kerolyn K. Shairsingh; Robert M. Healy; Uwayemi M. Sofowote; Jerzy Debosz; Yushan Su; Michiyo McGaughey; Geoff Doerksen; Tony Munoz; Luc White; Dennis Herod; Greg J. Evans
A daily integrated emission factor (EF) method was applied to data from three near-road monitoring sites to identify variables that impact traffic related pollutant concentrations in the near-road environment. The sites were operated for 20 months in 2015-2017, with each site differing in terms of design, local meteorology, and fleet compositions. Measurement distance from the roadway and local meteorology were found to affect pollutant concentrations irrespective of background subtraction. However, using emission factors mostly accounted for the effects of dilution and dispersion, allowing intersite differences in emissions to be resolved. A multiple linear regression model that included predictor variables such as fraction of larger vehicles (>7.6 m in length; i.e., heavy-duty vehicles), vehicle speed, and ambient temperature accounted for intersite variability of the fleet average NO, NO x, and particle number EFs (R2:0.50-0.75), with lower model performance for CO and black carbon (BC) EFs (R2:0.28-0.46). NO x and BC EFs were affected more than CO and particle number EFs by the fraction of larger vehicles, which also resulted in measurable weekday/weekend differences. Pollutant EFs also varied with ambient temperature and because there were little seasonal changes in fleet composition, this was attributed to changes in fuel composition and/or post-tailpipe transformation of pollutants.
Atmospheric Environment | 2007
Yushan Su; Hayley Hung; Ed Sverko; Phil Fellin; Henrik Li
Environmental Science & Technology | 2006
Yushan Su; Hayley Hung; Pierrette Blanchard; Gregory W. Patton; Roland Kallenborn; A. Konoplev; Phil Fellin; Henrik Li; Charles Geen; Gary A. Stern; and Bruno Rosenberg; L. A. Barrie
Environmental Science & Technology | 2007
Yushan Su; Frank Wania; Tom Harner; Ying D. Lei