Eddie M. K. Chung
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eddie M. K. Chung.
Nature Genetics | 2002
Heike Olbrich; Karsten Häffner; Andreas Kispert; Alexander Völkel; Andreas Volz; Gürsel Sasmaz; Richard Reinhardt; Steffen Hennig; Hans Lehrach; Nikolaus Konietzko; Maimoona A. Zariwala; Peadar G. Noone; Hannah M. Mitchison; Maggie Meeks; Eddie M. K. Chung; Friedhelm Hildebrandt; Ralf Sudbrak; Heymut Omran
Primary ciliary dyskinesia (PCD, MIM 242650) is characterized by recurrent infections of the respiratory tract due to reduced mucociliary clearance and by sperm immobility. Half of the affected offspring have situs inversus (reversed organs), which results from randomization of left-right (LR) asymmetry. We previously localized to chromosome 5p a PCD locus containing DNAH5, which encodes a protein highly similar to the Chlamydomonas γ-dynein heavy chain. Here we characterize the full-length 14-kb transcript of DNAH5. Sequence analysis in individuals with PCD with randomization of LR asymmetry identified mutations resulting in non-functional DNAH5 proteins.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Lucia Bartoloni; Jean-Louis Blouin; Yanzhen Pan; Corinne Gehrig; Amit K. Maiti; Nathalie Scamuffa; Colette Rossier; Mark Jorissen; Miguel Armengot; Maggie Meeks; Hannah M. Mitchison; Eddie M. K. Chung; Celia D. DeLozier-Blanchet; William J. Craigen
Primary ciliary dyskinesia (PCD; MIM 242650) is an autosomal recessive disorder of ciliary dysfunction with extensive genetic heterogeneity. PCD is characterized by bronchiectasis and upper respiratory tract infections, and half of the patients with PCD have situs inversus (Kartagener syndrome). We characterized the transcript and the genomic organization of the axonemal heavy chain dynein type 11 (DNAH11) gene, the human homologue of murine Dnah11 or lrd, which is mutated in the iv/iv mouse model with situs inversus. To assess the role of DNAH11, which maps on chromosome 7p21, we searched for mutations in the 82 exons of this gene in a patient with situs inversus totalis, and probable Kartagener syndrome associated with paternal uniparental disomy of chromosome 7 (patUPD7). We identified a homozygous nonsense mutation (R2852X) in the DNAH11 gene. This patient is remarkable because he is also homozygous for the F508del allele of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Sequence analysis of the DNAH11 gene in an additional 6 selected PCD sibships that shared DNAH11 alleles revealed polymorphic variants and an R3004Q substitution in a conserved position that might be pathogenic. We conclude that mutations in the coding region of DNAH11 account for situs inversus totalis and probably a minority of cases of PCD.
American Journal of Human Genetics | 2008
Niki T. Loges; Heike Olbrich; Lale Fenske; Huda Mussaffi; Judit Horvath; Manfred Fliegauf; Heiner Kuhl; György Baktai; Rahul Chodhari; Eddie M. K. Chung; Andrew Rutman; Christopher O'Callaghan; Hannah Blau; László Tiszlavicz; Katarzyna Voelkel; Michał Witt; Ewa Ziętkiewicz; Juergen Neesen; Richard Reinhardt; Hannah M. Mitchison; Heymut Omran
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by chronic destructive airway disease and randomization of left/right body asymmetry. Males often have reduced fertility due to impaired sperm tail function. The complex PCD phenotype results from dysfunction of cilia of the airways and the embryonic node and the structurally related motile sperm flagella. This is associated with underlying ultrastructural defects that frequently involve the outer dynein arm (ODA) complexes that generate cilia and flagella movement. Applying a positional and functional candidate-gene approach, we identified homozygous loss-of-function DNAI2 mutations (IVS11+1G > A) in four individuals from a family with PCD and ODA defects. Further mutational screening of 105 unrelated PCD families detected two distinct homozygous mutations, including a nonsense (c.787C > T) and a splicing mutation (IVS3-3T > G) resulting in out-of-frame transcripts. Analysis of protein expression of the ODA intermediate chain DNAI2 showed sublocalization throughout respiratory cilia. Electron microscopy showed that mutant respiratory cells from these patients lacked DNAI2 protein expression and exhibited ODA defects. High-resolution immunofluorescence imaging demonstrated absence of the ODA heavy chains DNAH5 and DNAH9 from all DNAI2 mutant ciliary axonemes. In addition, we demonstrated complete or distal absence of DNAI2 from ciliary axonemes in respiratory cells of patients with mutations in genes encoding the ODA chains DNAH5 and DNAI1, respectively. Thus, DNAI2 and DNAH5 mutations affect assembly of proximal and distal ODA complexes, whereas DNAI1 mutations mainly disrupt assembly of proximal ODA complexes.
American Journal of Human Genetics | 2012
Heike Olbrich; Miriam Schmidts; Claudius Werner; Alexandros Onoufriadis; Niki T. Loges; Johanna Raidt; Nora F. Banki; Amelia Shoemark; Tom Burgoyne; Saeed Al Turki; Gabriele Köhler; Josef Schroeder; Gudrun Nürnberg; Peter Nürnberg; Eddie M. K. Chung; Richard Reinhardt; June K. Marthin; Kim G. Nielsen; Hannah M. Mitchison; Heymut Omran
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder characterized by defective cilia and flagella motility. Chronic destructive-airway disease is caused by abnormal respiratory-tract mucociliary clearance. Abnormal propulsion of sperm flagella contributes to male infertility. Genetic defects in most individuals affected by PCD cause randomization of left-right body asymmetry; approximately half show situs inversus or situs ambiguous. Almost 70 years after the hy3 mouse possessing Hydin mutations was described as a recessive hydrocephalus model, we report HYDIN mutations in PCD-affected persons without hydrocephalus. By homozygosity mapping, we identified a PCD-associated locus, chromosomal region 16q21-q23, which contains HYDIN. However, a nearly identical 360 kb paralogous segment (HYDIN2) in chromosomal region 1q21.1 complicated mutational analysis. In three affected German siblings linked to HYDIN, we identified homozygous c.3985G>T mutations that affect an evolutionary conserved splice acceptor site and that subsequently cause aberrantly spliced transcripts predicting premature protein termination in respiratory cells. Parallel whole-exome sequencing identified a homozygous nonsense HYDIN mutation, c.922A>T (p.Lys307(∗)), in six individuals from three Faroe Island PCD-affected families that all carried an 8.8 Mb shared haplotype across HYDIN, indicating an ancestral founder mutation in this isolated population. We demonstrate by electron microscopy tomography that, consistent with the effects of loss-of-function mutations, HYDIN mutant respiratory cilia lack the C2b projection of the central pair (CP) apparatus; similar findings were reported in Hydin-deficient Chlamydomonas and mice. High-speed videomicroscopy demonstrated markedly reduced beating amplitudes of respiratory cilia and stiff sperm flagella. Like the hy3 mouse model, all nine PCD-affected persons had normal body composition because nodal cilia function is apparently not dependent on the function of the CP apparatus.
web science | 2012
Hannah M. Mitchison; Miriam Schmidts; Niki T. Loges; Judy Freshour; Athina Dritsoula; Robert A. Hirst; Christopher J. O'Callaghan; Hannah Blau; Maha Al Dabbagh; Heike Olbrich; Philip L. Beales; Toshiki Yagi; Huda Mussaffi; Eddie M. K. Chung; Heymut Omran; David R. Mitchell
Primary ciliary dyskinesia most often arises from loss of the dynein motors that power ciliary beating. Here we show that DNAAF3 (also known as PF22), a previously uncharacterized protein, is essential for the preassembly of dyneins into complexes before their transport into cilia. We identified loss-of-function mutations in the human DNAAF3 gene in individuals from families with situs inversus and defects in the assembly of inner and outer dynein arms. Knockdown of dnaaf3 in zebrafish likewise disrupts dynein arm assembly and ciliary motility, causing primary ciliary dyskinesia phenotypes that include hydrocephalus and laterality malformations. Chlamydomonas reinhardtii PF22 is exclusively cytoplasmic, and a PF22-null mutant cannot assemble any outer and some inner dynein arms. Altered abundance of dynein subunits in mutant cytoplasm suggests that DNAAF3 (PF22) acts at a similar stage as other preassembly proteins, for example, DNAAF2 (also known as PF13 or KTU) and DNAAF1 (also known as ODA7 or LRRC50), in the dynein preassembly pathway. These results support the existence of a conserved, multistep pathway for the cytoplasmic formation of assembly competent ciliary dynein complexes.
Nature Genetics | 2012
Jennifer R. Panizzi; Anita Becker-Heck; Victoria H. Castleman; Dalal A Al-Mutairi; Yan Liu; Niki T. Loges; Narendra Pathak; Christina Austin-Tse; Eamonn Sheridan; Miriam Schmidts; Heike Olbrich; Claudius Werner; Karsten Häffner; Nathan Hellman; Rahul Chodhari; Amar Gupta; Albrecht Kramer-Zucker; Felix Olale; Rebecca D. Burdine; Alexander F. Schier; Christopher J. O'Callaghan; Eddie M. K. Chung; Richard Reinhardt; Hannah M. Mitchison; Stephen M. King; Heymut Omran; Iain A. Drummond
Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation and establishing laterality. Cilia motility defects cause primary ciliary dyskinesia (PCD, MIM244400), a disorder affecting 1:15,000–30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive ciliary bending. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD-linked loci. Here we show that the zebrafish cilia paralysis mutant schmalhans (smhtn222) encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a-regulated gene product. Screening 146 unrelated PCD families identified individuals in six families with reduced outer dynein arms who carried mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103/Pr46b functions as a tightly bound, axoneme-associated protein. These results identify Ccdc103 as a dynein arm attachment factor that causes primary ciliary dyskinesia when mutated.
American Journal of Human Genetics | 2013
Daniel J. Moore; Alexandros Onoufriadis; Amelia Shoemark; Michael A. Simpson; Petra I. zur Lage; Sandra C.P. De Castro; Lucia Bartoloni; Giuseppe Gallone; Stavroula Petridi; Wesley J. Woollard; Dinu Antony; Miriam Schmidts; Teresa Didonna; Periklis Makrythanasis; Jeremy Bevillard; Nigel P. Mongan; Jana Djakow; Gerard Pals; Jane S. Lucas; June K. Marthin; Kim G. Nielsen; Federico Santoni; Michel Guipponi; Claire Hogg; Richard D. Emes; Eddie M. K. Chung; Nicholas D.E. Greene; Jean Louis Blouin; Andrew P. Jarman; Hannah M. Mitchison
Primary ciliary dyskinesia (PCD) is a ciliopathy characterized by airway disease, infertility, and laterality defects, often caused by dual loss of the inner dynein arms (IDAs) and outer dynein arms (ODAs), which power cilia and flagella beating. Using whole-exome and candidate-gene Sanger resequencing in PCD-affected families afflicted with combined IDA and ODA defects, we found that 6/38 (16%) carried biallelic mutations in the conserved zinc-finger gene BLU (ZMYND10). ZMYND10 mutations conferred dynein-arm loss seen at the ultrastructural and immunofluorescence level and complete cilia immotility, except in hypomorphic p.Val16Gly (c.47T>G) homozygote individuals, whose cilia retained a stiff and slowed beat. In mice, Zmynd10 mRNA is restricted to regions containing motile cilia. In a Drosophila model of PCD, Zmynd10 is exclusively expressed in cells with motile cilia: chordotonal sensory neurons and sperm. In these cells, P-element-mediated gene silencing caused IDA and ODA defects, proprioception deficits, and sterility due to immotile sperm. Drosophila Zmynd10 with an equivalent c.47T>G (p.Val16Gly) missense change rescued mutant male sterility less than the wild-type did. Tagged Drosophila ZMYND10 is localized primarily to the cytoplasm, and human ZMYND10 interacts with LRRC6, another cytoplasmically localized protein altered in PCD. Using a fly model of PCD, we conclude that ZMYND10 is a cytoplasmic protein required for IDA and ODA assembly and that its variants cause ciliary dysmotility and PCD with laterality defects.
American Journal of Human Genetics | 2013
Alexandros Onoufriadis; Tamara Paff; Dinu Antony; Amelia Shoemark; Dimitra Micha; Bertus Kuyt; Miriam Schmidts; Stavroula Petridi; Jeanette E. Dankert-Roelse; Eric G. Haarman; Johannes M.A. Daniels; Richard D. Emes; Rob Wilson; Claire Hogg; Peter J. Scambler; Eddie M. K. Chung; Gerard Pals; Hannah M. Mitchison
Defects in motile cilia and sperm flagella cause primary ciliary dyskinesia (PCD), characterized by chronic airway disease, infertility, and left-right laterality disturbances, usually as a result of loss of the outer dynein arms (ODAs) that power cilia/flagella beating. Here, we identify loss-of-function mutations in CCDC114 causing PCD with laterality malformations involving complex heart defects. CCDC114 is homologous to DCC2, an ODA microtubule-docking complex component of the biflagellate alga Chlamydomonas. We show that CCDC114 localizes along the entire length of human cilia and that its deficiency causes a complete absence of ciliary ODAs, resulting in immotile cilia. Thus, CCDC114 is an essential ciliary protein required for microtubular attachment of ODAs in the axoneme. Fertility is apparently not greatly affected by CCDC114 deficiency, and qPCR shows that this may explained by low transcript expression in testis compared to ciliated respiratory epithelium. One CCDC114 mutation, c.742G>A, dating back to at least the 1400s, presents an important diagnostic and therapeutic target in the isolated Dutch Volendam population.
Nature Communications | 2014
Mieke Boon; Julia Wallmeier; Lina Ma; Niki T. Loges; Martine Jaspers; Heike Olbrich; Gerard W. Dougherty; Johanna Raidt; Claudius Werner; Israel Amirav; Avigdor Hevroni; Revital Abitbul; Avraham Avital; Ruth Soferman; Marja W. Wessels; Christopher J. O'Callaghan; Eddie M. K. Chung; Andrew Rutman; Robert A. Hirst; Eduardo Moya; Hannah M. Mitchison; Sabine Van daele; Kris De Boeck; Mark Jorissen; Chris Kintner; Harry Cuppens; Heymut Omran
Reduced generation of multiple motile cilia (RGMC) is a rare mucociliary clearance disorder. Affected persons suffer from recurrent infections of upper and lower airways because of highly reduced numbers of multiple motile respiratory cilia. Here we report recessive loss-of-function and missense mutations in MCIDAS-encoding Multicilin, which was shown to promote the early steps of multiciliated cell differentiation in Xenopus. MCIDAS mutant respiratory epithelial cells carry only one or two cilia per cell, which lack ciliary motility-related proteins (DNAH5; CCDC39) as seen in primary ciliary dyskinesia. Consistent with this finding, FOXJ1-regulating axonemal motor protein expression is absent in respiratory cells of MCIDAS mutant individuals. CCNO, when mutated known to cause RGMC, is also absent in MCIDAS mutant respiratory cells, consistent with its downstream activity. Thus, our findings identify Multicilin as a key regulator of CCNO/FOXJ1 for human multiciliated cell differentiation, and highlight the 5q11 region containing CCNO and MCIDAS as a locus underlying RGMC.
Human Mutation | 2013
Dinu Antony; Anita Becker-Heck; Maimoona A. Zariwala; Miriam Schmidts; Alexandros Onoufriadis; Mitra Forouhan; Rob Wilson; Theresa Taylor‐Cox; Ann Dewar; Claire Jackson; Patricia Goggin; Niki T. Loges; Heike Olbrich; Martine Jaspers; Mark Jorissen; Margaret W. Leigh; Whitney E. Wolf; M. Leigh Anne Daniels; Peadar G. Noone; Thomas W. Ferkol; Scott D. Sagel; Margaret Rosenfeld; Andrew Rutman; Abhijit Dixit; Christopher J. O'Callaghan; Jane S. Lucas; Claire Hogg; Peter J. Scambler; Richard D. Emes; Eddie M. K. Chung
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder caused by cilia and sperm dysmotility. About 12% of cases show perturbed 9+2 microtubule cilia structure and inner dynein arm (IDA) loss, historically termed “radial spoke defect.” We sequenced CCDC39 and CCDC40 in 54 “radial spoke defect” families, as these are the two genes identified so far to cause this defect. We discovered biallelic mutations in a remarkable 69% (37/54) of families, including identification of 25 (19 novel) mutant alleles (12 in CCDC39 and 13 in CCDC40). All the mutations were nonsense, splice, and frameshift predicting early protein truncation, which suggests this defect is caused by “null” alleles conferring complete protein loss. Most families (73%; 27/37) had homozygous mutations, including families from outbred populations. A major putative hotspot mutation was identified, CCDC40 c.248delC, as well as several other possible hotspot mutations. Together, these findings highlight the key role of CCDC39 and CCDC40 in PCD with axonemal disorganization and IDA loss, and these genes represent major candidates for genetic testing in families affected by this ciliary phenotype. We show that radial spoke structures are largely intact in these patients and propose this ciliary ultrastructural abnormality be referred to as “IDA and microtubular disorganisation defect,” rather than “radial spoke defect.”