Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eder C. Lima is active.

Publication


Featured researches published by Eder C. Lima.


Journal of Hazardous Materials | 2011

Adsorption of Reactive Red M-2BE dye from water solutions by multi-walled carbon nanotubes and activated carbon

Fernando M. Machado; Carlos Perez Bergmann; Thais H.M. Fernandes; Eder C. Lima; Betina Royer; Tatiana Calvete; Solange B. Fagan

Multi-walled carbon nanotubes and powdered activated carbon were used as adsorbents for the successful removal of Reactive Red M-2BE textile dye from aqueous solutions. The adsorbents were characterised by infrared spectroscopy, N(2) adsorption/desorption isotherms and scanning electron microscopy. The effects of pH, shaking time and temperature on adsorption capacity were studied. In the acidic pH region (pH 2.0), the adsorption of the dye was favourable using both adsorbents. The contact time to obtain equilibrium at 298K was fixed at 1h for both adsorbents. The activation energy of the adsorption process was evaluated from 298 to 323K for both adsorbents. The Avrami fractional-order kinetic model provided the best fit to the experimental data compared with pseudo-first-order or pseudo-second-order kinetic adsorption models. For Reactive Red M-2BE dye, the equilibrium data were best fitted to the Liu isotherm model. Simulated dyehouse effluents were used to check the applicability of the proposed adsorbents for effluent treatment.


Journal of Hazardous Materials | 2009

Applications of Brazilian pine-fruit shell in natural and carbonized forms as adsorbents to removal of methylene blue from aqueous solutions-Kinetic and equilibrium study

Betina Royer; Natali F. Cardoso; Eder C. Lima; Julio C.P. Vaghetti; Nathalia M. Simon; Tatiana Calvete; Renato Cataluña Veses

The Brazilian pine-fruit shell (Araucaria angustifolia) is a food residue, which was used in natural and carbonized forms, as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. Chemical treatment of Brazilian pine-fruit shell (PW), with sulfuric acid produced a non-activated carbonaceous material (C-PW). Both PW and C-PW were tested as low-cost adsorbents for the removal of MB from aqueous effluents. It was observed that C-PW leaded to a remarkable increase in the specific surface area, average porous volume, and average porous diameter of the adsorbent when compared to PW. The effects of shaking time, adsorbent dosage and pH on adsorption capacity were studied. In basic pH region (pH 8.5) the adsorption of MB was favorable. The contact time required to obtain the equilibrium was 6 and 4h at 25 degrees C, using PW and C-PW as adsorbents, respectively. Based on error function values (F(error)) the kinetic data were better fitted to fractionary-order kinetic model when compared to pseudo-first order, pseudo-second order, and chemisorption kinetic models. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. For MB dye the equilibrium data were better fitted to the Sips isotherm model using PW and C-PW as adsorbents.


Journal of Hazardous Materials | 2009

Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions.

Julio C.P. Vaghetti; Eder C. Lima; Betina Royer; Bruna Müller da Cunha; Natali F. Cardoso; Jorge L. Brasil; Silvio L.P. Dias

In the present study we reported for the first time the feasibility of pecan nutshell (PNS, Carya illinoensis) as an alternative biosorbent to remove Cu(II), Mn(II) and Pb(II) metallic ions from aqueous solutions. The ability of PNS to remove the metallic ions was investigated by using batch biosorption procedure. The effects such as, pH, biosorbent dosage on the adsorption capacities of PNS were studied. Four kinetic models were tested, being the adsorption kinetics better fitted to fractionary-order kinetic model. Besides that, the kinetic data were also fitted to intra-particle diffusion model, presenting three linear regions, indicating that the kinetics of adsorption should follow multiple sorption rates. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. Taking into account a statistical error function, the data were best fitted to Sips isotherm model. The maximum biosorption capacities of PNS were 1.35, 1.78 and 0.946mmolg(-1) for Cu(II), Mn(II) and Pb(II), respectively.


Journal of Environmental Management | 2011

Application of cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution

Natali F. Cardoso; Eder C. Lima; Isis S. Pinto; Camila V. Amavisca; Betina Royer; Rodrigo B. Pinto; Wagner S. Alencar; Simone de Fátima Pinheiro Pereira

The cupuassu shell (Theobroma grandiflorum) which is a food residue was used in its natural form as biosorbent for the removal of C.I. Reactive Red 194 and C.I. Direct Blue 53 dyes from aqueous solutions. This biosorbent was characterized by infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption/desorption curves. The effects of pH, biosorbent dosage and shaking time on biosorption capacities were studied. In acidic pH region (pH 2.0) the biosorption of the dyes were favorable. The contact time required to obtain the equilibrium was 8 and 18 h at 298 K, for Reactive Red 194 and Direct Blue 53, respectively. The Avrami fractionary-order kinetic model provided the best fit to experimental data compared with pseudo-first-order, pseudo-second-order and chemisorption kinetic adsorption models. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Radke-Prausnitz isotherm models. For both dyes the equilibrium data were best fitted to the Sips isotherm model.


Journal of Hazardous Materials | 2008

Application of Brazilian pine-fruit shell as a biosorbent to removal of reactive red 194 textile dye from aqueous solution kinetics and equilibrium study.

Eder C. Lima; Betina Royer; Julio C.P. Vaghetti; Nathalia M. Simon; Bruna Müller da Cunha; Flávio André Pavan; Edilson Valmir Benvenutti; Renato Cataluña-Veses; Claudio Airoldi

The Brazilian pine-fruit shell (Araucaria angustifolia) is a food residue, that was used as biosorbent for the removal of non-hydrolyzed reactive red 194 (NRR) and hydrolyzed reactive red 194 (HRR) forms from aqueous solutions. Chemical treatment of Brazilian pine-fruit shell (PW), with chromium (Cr-PW), with acid (A-PW), and with acid followed by chromium (Cr-A-PW) were also tested as alternative biosorbents for the removal of NRR and HRR from aqueous effluents. It was observed that the treatment of the Brazilian pine-fruit shell with chromium (Cr-PW and Cr-A-PW) leaded to a remarkable increase in the specific surface area and average porous volume of these biosorbents when compared to unmodified Brazilian pine-fruit shell (PW). The effects of shaking time, biosorbent dosage and pH on biosorption capacity were studied. In acidic pH region (pH 2.0) the biosorption of NRR and HRR were favorable. The contact time required to obtain the equilibrium was 24h at 25 degrees C. The equilibrium data were fitted to Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. For NRR reactive dye the equilibrium data were best fitted to the Sips isotherm model using PW and A-PW as biosorbents, and Redlich-Peterson isotherm model using Cr-PW and Cr-A-PW as biosorbents. For HRR reactive dye the equilibrium data were best fitted to the Sips isotherm model using PW, A-PW and Cr-A-PW and the Redlich-Peterson isotherm model for Cr-PW as biosorbent.


Journal of Hazardous Materials | 2010

A useful organofunctionalized layered silicate for textile dye removal

Betina Royer; Natali F. Cardoso; Eder C. Lima; Thaís R. Macedo; Claudio Airoldi

The octosilicate Na-RUB-18 has the ability to exchange its original sodium with cetyltrimethylammonium cations. This procedure leads to interlayer space expansion, with the aim of obtaining inorganic-organic nanostructured hybrids by chemical modification reactions. The silylating agent 3-trimethoxysilylpropylurea was attached to the inorganic layer using heterogeneous methodology. The new organofunctionalized material was characterized by elemental analysis, X-ray diffraction, (13)C and (29)Si nuclear magnetic resonances in the solid state, infrared spectroscopy, thermogravimetry and scanning electron microscopy. The amount of silylating agent immobilized on surface was 2.03 mmol g(-1), with a basal distance of 2.43 nm. Nuclear magnetic resonance of (13)C and (29)Si nuclei evidenced covalent bond formation between organosilyl and silanol groups at the surface. The new synthesized nanostructured layered material was able to remove the textile dye Reactive Black 5 from aqueous solution, followed through a batchwise process. The effects of stirring time, adsorbent dosage and pH on the adsorption capacity demonstrated that 150 min is enough to reach equilibrium at 298+/-1 K at pH 3.0. Based on error function values the data were best fitted to fractional-order kinetic models and compared to pseudo-first-order, pseudo-second-order and chemisorption kinetic models. The equilibrium data were better fitted to the Sips isotherm models.


Bioresource Technology | 2012

Biosorption of food dyes onto Spirulina platensis nanoparticles: equilibrium isotherm and thermodynamic analysis.

Guilherme L. Dotto; Eder C. Lima; Luiz Antonio de Almeida Pinto

The biosorption of food dyes FD&C red no. 40 and acid blue 9 onto Spirulina platensis nanoparticles was studied at different conditions of pH and temperature. Four isotherm models were used to evaluate the biosorption equilibrium and the thermodynamic parameters were estimated. Infra red analysis (FT-IR) and energy dispersive X-ray spectroscopy (EDS) were used to verify the biosorption behavior. The maximum biosorption capacities of FD&C red no. 40 and acid blue 9 were found at pH 4 and 298 K, and the values were 468.7 mg g(-1) and 1619.4 mg g(-1), respectively. The Sips model was more adequate to fit the equilibrium experimental data (R2>0.99 and ARE<5%). Thermodynamic study showed that the biosorption was exothermic, spontaneous and favorable. FT-IR and EDS analysis suggested that at pH 4 and 298 K, the biosorption of both dyes onto nanoparticles occurred by chemisorption.


Journal of Hazardous Materials | 2012

Comparison of Spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents.

Natali F. Cardoso; Eder C. Lima; Betina Royer; Marta V. Bach; Guilherme L. Dotto; Luiz Antonio de Almeida Pinto; Tatiana Calvete

Spirulina platensis microalgae (SP) and commercial activated carbon (AC) were compared as adsorbents to remove Reactive Red 120 (RR-120) textile dye from aqueous effluents. The batch adsorption system was evaluated in relation to the initial pH, contact time, initial dye concentration and temperature. An alternative kinetic model (general order kinetic model) was compared with the traditional pseudo-first order and pseudo-second order kinetic models. The equilibrium data were fitted to the Langmuir, Freundlich and Liu isotherm models, and the thermodynamic parameters were also estimated. Finally, the adsorbents were employed to treat a simulated dye-house effluent. The general order kinetic model was more appropriate to explain RR-120 adsorption by SP and AC. The equilibrium data were best fitted to the Liu isotherm model. The maximum adsorption capacities of RR-120 dye were found at pH 2 and 298 K, and the values were 482.2 and 267.2 mg g(-1) for the SP and AC adsorbents, respectively. The thermodynamic study showed that the adsorption was exothermic, spontaneous and favourable. The SP and AC adsorbents presented good performance for the treatment of simulated industrial textile effluents, removing 94.4-99.0% and 93.6-97.7%, respectively, of the dye mixtures containing high saline concentrations.


Journal of Hazardous Materials | 2015

Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents

Caroline Saucier; Matthew A. Adebayo; Eder C. Lima; Renato Cataluña; Pascal S. Thue; Lizie D.T. Prola; M.J. Puchana-Rosero; Fernando M. Machado; Flávio André Pavan; G.L. Dotto

Microwave-induced chemical activation process was used to prepare an activated carbon from cocoa shell for efficient removal of two anti-inflammatories, sodium diclofenac (DFC) and nimesulide (NM), from aqueous solutions. A paste was obtained from a mixture of cocoa shell and inorganic components; with a ratio of inorganic: organic of 1 (CSC-1.0). The mixture was pyrolyzed in a microwave oven in less than 10 min. The CSC-1.0 was acidified with a 6 mol L(-1) HCl under reflux to produce MWCS-1.0. The CSC-1.0 and MWCS-1.0 were characterized using FTIR, SEM, N2 adsorption/desorption curves, X-ray diffraction, and point of zero charge (pHpzc). Experimental variables such as initial pH of the adsorbate solutions and contact time were optimized for adsorptive characteristics of MWCS-1.0. The optimum pH for removal of anti-inflammatories ranged between 7.0 and 8.0. The kinetic of adsorption was investigated using general order, pseudo first-order and pseu do-second order kinetic models. The maximum amounts of DCF and NM adsorbed onto MWCS-1.0 at 25 °C are 63.47 and 74.81 mg g(-1), respectively. The adsorbent was tested on two simulated hospital effluents. MWCS-1.0 is capable of efficient removal of DCF and NM from a medium that contains high sugar and salt concentrations.


Journal of Colloid and Interface Science | 2009

Organofunctionalized kenyaite for dye removal from aqueous solution.

Betina Royer; Natali F. Cardoso; Eder C. Lima; Vanusa S.O. Ruiz; Thaís R. Macedo; Claudio Airoldi

Crystalline layered sodium kenyaite was exchanged to proton kenyaite when reacted with hydrochloric acid solution, providing a new surface with available silanol groups that are able to couple with N-3-trimethoxysilylpropylethylenediamine silylating agent, after prior expansion of the basal distance with the polar organic solvent dimethyl sulfoxide. The resulting organofunctionalized nanomaterial (2N-Ken) was characterized by elemental analysis, infrared spectroscopy, X-ray diffraction, carbon and silicon nuclear magnetic resonances in the solid state, surface analysis, porosity, thermogravimetry, and electron scanning microscopy. The quantity of silylating agent incorporated into the nanospace, calculated from the nitrogen elemental analysis, was determined as 0.48 mmol g(-1), after expanding of the acidic precursor basal distance from 1.62 to 1.99 nm. The presence of a covalent silicon-carbon bond of the organosilyl moiety on the inorganic layered structure was confirmed through nuclear magnetic resonance. This new nanomaterial has the ability to extract the Sumifix Brilliant Orange 3R textile dye from aqueous solution, using a batchwise process. The effects of stirring time, adsorbent dosage, and pH on the adsorption capacity demonstrated that 4 h is enough to reach equilibrium at 298+/-1 K under pH 4.0. Based on error function values (F(error)) the data were best fitted to fractional-order and chemisorption kinetic models when compared to pseudo-first-order and pseudo-second-order kinetic models. The equilibrium data were better fitted to the Sips isotherm model.

Collaboration


Dive into the Eder C. Lima's collaboration.

Top Co-Authors

Avatar

Silvio L.P. Dias

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Flávio André Pavan

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Glaydson S. dos Reis

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Julio C.P. Vaghetti

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Betina Royer

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Edilson Valmir Benvenutti

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Guilherme L. Dotto

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Pascal S. Thue

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge