Edgar Canavan
Goddard Space Flight Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edgar Canavan.
Journal of Magnetism and Magnetic Materials | 2003
Virgil Provenzano; J Li; Todd King; Edgar Canavan; Peter J. Shirron; M. J. DiPirro; Robert D. Shull
A series of R 3 (Ga 1-x Fe x ) 5 O 12 (R=Gd, Dy, Ho; 0<x<1) compounds for potential magnetic refrigerants were synthesized by chemical routes and characterized by X-ray diffraction, and SQUID magnetometry. Dy and Ho were chosen since they respectively possess increasing orbital contributions to the total angular magnetic moment of the atom over the zero value for Gd. X-ray data showed that garnet structures were obtained and that improvements over the Gd 3 (Ga 0.5 Fe 0.5 ) 5 O 12 compound, which was reported in 1992 as possessing enhanced magnetocaloric effects, may be achieved by equilibrating at 1473K for 15 h, rather than at 1173K for 15h as was done in the earlier studies. Magnetometry measurements showed that when Gd was substituted either by Dy or Ho, the material was superparamagnetic, possessing fine magnetic clusters resulting in enhanced magnetocaloric effects (ΔS m ) with respect to the basic paramagnetic garnet (i.e., x = 0). In addition, with variation in x, the optimal ΔS m was measured for the x = 0.5 compound, similar to that found for the Gd-containing garnet nanocomposites. The optimal ΔS m values for the Ho- and Dy-containing compounds, respectively, were found to be about the same or smaller than that for the optimal Gd-containing nanocomposite Gd 3 (Ga 0.5 Fe 0.5 ) 5 O 12 , despite the increased total angular moment. We interpret these results as indicating a reduction in the interaction strength between the rare-earth elements and the Fe as the Gd is replaced by Dy or Ho, and that Dy reduces this interaction strength faster than does Ho.
Proceedings of SPIE | 2016
Richard L. Kelley; Hiroki Akamatsu; Phillipp Azzarell; Tom Bialas; Gregory V. Brown; Edgar Canavan; Meng P. Chiao; E. Costantini; Michael DiPirro; Megan E. Eckart; Yuichiro Ezoe; Ryuichi Fujimoto; D. Haas; Jan Willem den Herder; Akio Hoshino; Kumi Ishikawa; Yoshitaka Ishisaki; Naoko Iyomoto; Caroline A. Kilbourne; Mark O. Kimball; Shunji Kitamoto; Saori Konami; Shu Koyama; Maurice A. Leutenegger; Dan McCammon; Joseph Miko; Kazuhisa Mitsuda; Ikuyuki Mitsuishi; Harvey Moseley; Hiroshi Murakami
We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.
Proceedings of SPIE | 2014
Kazuhisa Mitsuda; Richard L. Kelley; Hiroki Akamatsu; Thomas G. Bialas; Gregory V. Brown; Edgar Canavan; Meng Chiao; E. Costantini; Jan Willem den Herder; Cor P. de Vries; Michael DiPirro; Megan E. Eckart; Yuichiro Ezoe; Ryuichi Fujimoto; D. Haas; Akio Hoshino; Kumi Ishikawa; Yoshitaka Ishisaki; Naoko Iyomoto; Caroline A. Kilbourne; Mark O. Kimball; Shunji Kitamoto; Saori Konami; M. A. Leutenegger; Dan McCammon; Joseph Miko; Ikuyuki Mitsuishi; Hiroshi Murakami; Masahide Murakami; Hirofumi Noda
We present the development status of the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H mission. The SXS provides the capability of high energy-resolution X-ray spectroscopy of a FWHM energy resolution of < 7eV in the energy range of 0.3 – 10 keV. It utilizes an X-ray micorcalorimeter array operated at 50 mK. The SXS microcalorimeter subsystem is being developed in an EM-FM approach. The EM SXS cryostat was developed and fully tested and, although the design was generally confirmed, several anomalies and problems were found. Among them is the interference of the detector with the micro-vibrations from the mechanical coolers, which is the most difficult one to solve. We have pursued three different countermeasures and two of them seem to be effective. So far we have obtained energy resolutions satisfying the requirement with the FM cryostat.
Advances in cryogenic engineering | 2000
Peter J. Shirron; Edgar Canavan; Michael DiPirro; J. G. Tuttle; C. J. Yeager
The design of a multi-stage adiabatic demagnetization refrigerator (ADR) that can provide continuous cooling at very low temperatures is presented. The ADR is being developed for use in x-ray, IR and sub-millimeter space astronomy missions which will employ large format detector arrays operating at 50 mK and lower and which may dissipate up to 10 μW. It is also being designed to reject heat slowly to a relatively warm heat sink (in the 6–10 K range), so that future missions may use mechanical cryocoolers instead of liquid helium for pre-cooling. The continuous nature of the device gives it a much higher cooling power per unit mass, allowing it to be much smaller and lighter than existing ADRs with comparable performance. Design details are discussed.
Cryogenics | 2001
Peter J. Shirron; Edgar Canavan; Michael DiPirro; M. Jackson; Todd King; John Panek; James Tuttle
Abstract We present test results of the first adiabatic demagnetization refrigerator (ADR) that produce true continuous cooling at sub-kelvin temperatures. This system uses multiple stages that operate in sequence to cascade heat from a “continuous” stage up to a heat sink. Continuous operation avoids the usual constraints of long hold times and short recycle times that lead to the generally large mass of single-shot ADRs, and allows us to achieve much higher cooling power per unit mass. Our design goal is 10 μW of cooling at 50 mK while rejecting heat to a 6–10 K heat sink. The total cold mass is estimated to be less than 10 kg, including magnetic shielding of each stage. These parameters envelop the requirements for currently planned astronomy missions. The relatively high temperature heat rejection capability allows it to operate with a mechanical cryocooler as part of a cryogen-free, low temperature cooling system. This has the advantages of long mission life and reduced complexity and cost. At present, we have assembled a three-stage ADR that operates with a superfluid helium bath. Additional work is underway to develop magnetocaloric materials that can extend its heat rejection capability up to 10 K. Design, operation and performance of the ADR are discussed.
Advances in cryogenic engineering | 2002
Peter J. Shirron; Edgar Canavan; M. J. DiPirro; M. Jackson; John Panek; J. G. Tuttle
We have designed, built, and tested a gas-gap heat switch that turns on and off passively, without the need for a separate, thermally activated getter. This switch uses 3He condensed as a thin film on alternating plates of copper. The switch is thermally conductive at temperatures above about 0.2 K, and is insulating if either end of the switch cools below about 0.15 K. The “on” conductance (7 mW/K at 0.25 K) is limited by the surface area and gap between the copper leaves, the saturated vapor pressure of the 3He, and the Kapitza boundary resistance between the 3He and the copper. The “off” conductance is determined by the helium containment shell which physically supports the two conductive ends. We have also designed and are building passive gas-gap heat switches that will passively turn off near 1 K and near 4 K. For these switches we rely on the strong temperature dependence of the vapor pressure of 4He adsorbed onto neon or copper substrates, respectively, when the coverage is less than one monolayer...
Proceedings of SPIE | 2016
Peter J. Shirron; Mark O. Kimball; Bryan L. James; Theodore Muench; Edgar Canavan; Michael DiPirro; Thomas G. Bialas; Gary A. Sneiderman; Caroline A. Kilbourne; F. S. Porter; Richard L. Kelley; Ryuichi Fujimoto; Yoh Takei; Seiji Yoshida; Kazuhisa Mitsuda
The Soft X-ray Spectrometer instrument on the Astro-H observatory contains a 6x6 array of x-ray microcalorimeters, which is cooled to 50 mK by an adiabatic demagnetization refrigerator (ADR). The ADR consists of three stages in order to provide stable detector cooling using either a 1.2 K superfluid helium bath or a 4.5 K Joule-Thomson (JT) cryocooler as its heat sink. When liquid helium is present, two of the ADR’s stages are used to single-shot cool the detectors while rejecting heat to the helium. After the helium is depleted, all three stages are used to cool both the helium tank (to about 1.5 K) and the detectors (to 50 mK) using the JT cryocooler as its heat sink. The Astro-H observatory, renamed Hitomi after its successful launch in February 2016, carried approximately 36 liters of helium into orbit. On day 5, the helium had cooled sufficiently (<1.4 K) to allow operation of the ADR. This paper describes the design, operation and on-orbit performance of the ADR.
Proceedings of SPIE | 2010
Peter J. Shirron; Mark O. Kimball; Donald Wegel; Edgar Canavan; Michael DiPirro
The Japanese Astro-H mission will include the Soft X-ray Spectrometer (SXS) instrument, whose 36-pixel detector array of ultra-sensitive x-ray microcalorimeters requires cooling to 50 mK. This will be accomplished using a 3-stage adiabatic demagnetization refrigerator (ADR). The design is dictated by the need to operate with full redundancy with both a superfluid helium dewar at 1.3 K or below, and with a 4.5 K Joule-Thomson (JT) cooler. The ADR is configured as a 2-stage unit that is located in a well in the helium tank, and a third stage that is mounted to the top of the helium tank. The third stage is directly connected through two heat switches to the JT cooler and the helium tank, and manages heat flow between the two. When liquid helium is present, the 2-stage ADR operates in a single-shot manner using the superfluid helium as a heat sink. The third stage may be used independently to reduce the time-average heat load on the liquid to extend its lifetime. When the liquid is depleted, the 2nd and 3rd stages operate as a continuous ADR to maintain the helium tank at as low a temperature as possible - expected to be 1.2 K - and the 1st stage cools from that temperature as a single-stage, single-shot ADR. The ADRs design and operating modes are discussed, along with test results of the prototype 3-stage ADR.
Advances in cryogenic engineering | 2006
Edgar Canavan; J. G. Tuttle
The James Webb Space Telescope will include an optical bench known as the integrated science instrument module (ISIM). Candidate structural materials for the ISIM must have low density, high stiffness, and low thermal expansion coefficient at the operating temperature of 30 Kelvin. The thermal conductivity and specific heat are important in modeling the on‐orbit cooldown. We built two different systems for measuring the thermal conductivity and specific heat of samples between 4 Kelvin and 290 Kelvin. Both experiments were carefully designed to minimize potential errors due to radiative heat transfer. We chose the cooling system and instrumentation to allow long‐term unattended operation. Software was developed to automate each experiment. It used an algorithm designed to ensure that each system was in steady state before a measurement was taken. We describe the two experiments and present the data.
ADVANCES IN CRYOGENIC ENGINEERING: Transactions of the Cryogenic Engineering Conference - CEC | 2006
M. J. DiPirro; J. G. Tuttle; M. Jackson; Edgar Canavan; Brent A. Warner; Peter J. Shirron
An adiabatic demagnetization refrigerator (ADR) is under development for use in cooling relatively large loads (10–100 mW) at 4 K and rejecting that heat to a cryocooler operating at 10 K. ADRs can operate in this temperature range with an efficiency of 75% of Carnot, saving as much as 2/3 of the required overall input power. In addition this ADR can provide cooling down to 0.4 K. The ADR magnet consists of 8 short coils wired in series and arranged in a toroid to provide self‐shielding of its magnetic field. Eliminating passive or active shields saves 30% of the mass of the system. The average field is 3 Tesla using 5 amps. In the first model the coils are wound with ordinary NbTi superconducting wire and operated at 4 K. A second version will then use fine Nb3Sn wire to provide complete 10 K operation. As a refrigerant for this temperature range we are using readily available gadolinium gallium garnet (GGG) crystals, which provide suitable performance. In the future we will switch to either GdLiF4 or Gd...