Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edgar Serfling is active.

Publication


Featured researches published by Edgar Serfling.


PLOS Biology | 2007

Epigenetic Control of the foxp3 Locus in Regulatory T Cells

Stefan Floess; Jennifer Freyer; Christiane Siewert; Udo Baron; Sven Olek; Julia K. Polansky; Kerstin Schlawe; Hyun-Dong Chang; Tobias Bopp; Edgar Schmitt; Stefan Klein-Hessling; Edgar Serfling; Alf Hamann; Jochen Huehn

Compelling evidence suggests that the transcription factor Foxp3 acts as a master switch governing the development and function of CD4+ regulatory T cells (Tregs). However, whether transcriptional control of Foxp3 expression itself contributes to the development of a stable Treg lineage has thus far not been investigated. We here identified an evolutionarily conserved region within the foxp3 locus upstream of exon-1 possessing transcriptional activity. Bisulphite sequencing and chromatin immunoprecipitation revealed complete demethylation of CpG motifs as well as histone modifications within the conserved region in ex vivo isolated Foxp3+CD25+CD4+ Tregs, but not in naïve CD25−CD4+ T cells. Partial DNA demethylation is already found within developing Foxp3+ thymocytes; however, Tregs induced by TGF-β in vitro display only incomplete demethylation despite high Foxp3 expression. In contrast to natural Tregs, these TGF-β–induced Foxp3+ Tregs lose both Foxp3 expression and suppressive activity upon restimulation in the absence of TGF-β. Our data suggest that expression of Foxp3 must be stabilized by epigenetic modification to allow the development of a permanent suppressor cell lineage, a finding of significant importance for therapeutic applications involving induction or transfer of Tregs and for the understanding of long-term cell lineage decisions.


Journal of Experimental Medicine | 2005

Autoamplification of NFATc1 expression determines its essential role in bone homeostasis

Masataka Asagiri; Kojiro Sato; Takako Usami; Sae Ochi; Hiroshi Nishina; Hiroki Yoshida; Ikuo Morita; Erwin F. Wagner; Tak W. Mak; Edgar Serfling; Hiroshi Takayanagi

NFATc1 and NFATc2 are functionally redundant in the immune system, but it was suggested that NFATc1 is required exclusively for differentiation of osteoclasts in the skeletal system. Here we provide genetic evidence that NFATc1 is essential for osteoclast differentiation in vivo by adoptive transfer of NFATc1 −/− hematopoietic stem cells to osteoclast-deficient Fos −/− mice, and by Fos −/− blastocyst complementation, thus avoiding the embryonic lethality of NFATc1 −/− mice. However, in vitro osteoclastogenesis in NFATc1-deficient cells was rescued by ectopic expression of NFATc2. The discrepancy between the in vivo essential role of NFATc1 and the in vitro effect of NFATc2 was attributed to selective autoregulation of the NFATc1 gene by NFAT through its promoter region. This suggested that an epigenetic mechanism contributes to the essential function of NFATc1 in cell lineage commitment. Thus, this study establishes that NFATc1 represents a potential therapeutic target for bone disease and reveals a mechanism that underlies the essential role of NFATc1 in bone homeostasis.


Biochimica et Biophysica Acta | 2000

The role of NF-AT transcription factors in T cell activation and differentiation.

Edgar Serfling; Friederike Berberich-Siebelt; Sergei Chuvpilo; Eriks Jankevics; Stefan Klein-Hessling; Thomas Twardzik; Andris Avots

The family of genuine NF-AT transcription factors consists of four members (NF-AT1 [or NF-ATp], NF-AT2 [or NF-ATc], NF-AT3 and NF-AT4 [or NF-ATx]) which are characterized by a highly conserved DNA binding domain (is designated as Rel similarity domain) and a calcineurin binding domain. The binding of the Ca(2+)-dependent phosphatase calcineurin to this region controls the nuclear import and exit of NF-ATs. This review deals (1) with the structure of NF-AT proteins, (2) the DNA binding of NF-AT factors and their interaction with AP-1, (3) NF-AT target genes, (4) signalling pathways leading to NF-AT activation: the role of protein kinases and calcineurin, (5) the nuclear entry and exit of NF-AT factors, (6) transcriptional transactivation by NF-AT factors, (7) the structure and expression of the chromosomal NF-AT2 gene, and (8) NF-AT factors in Th cell differentiation. The experimental data presented and discussed in the review show that NF-AT factors are major players in the control of T cell activation and differentiation and, in all likelihood, also of the cell cycle and apoptosis of T lymphocytes.


Immunity | 2002

Autoregulation of NFATc1/A Expression Facilitates Effector T Cells to Escape from Rapid Apoptosis

Sergei Chuvpilo; Eriks Jankevics; Dimitri Tyrsin; Askar M. Akimzhanov; Denis Moroz; Mithilesh Kumar Jha; Jan Schulze-Luehrmann; Brigitte Santner-Nanan; Elizaveta Feoktistova; Thomas König; Andris Avots; Edgar Schmitt; Friederike Berberich-Siebelt; Anneliese Schimpl; Edgar Serfling

Threshold levels of individual NFAT factors appear to be critical for apoptosis induction in effector T cells. In these cells, the short isoform A of NFATc1 is induced to high levels due to the autoregulation of the NFATc1 promoter P1 by NFATs. P1 is located within a CpG island in front of exon 1, represents a DNase I hypersensitive chromatin site, and harbors several sites for binding of inducible transcription factors, including a tandemly arranged NFAT site. A second promoter, P2, before exon 2, is not controlled by NFATs and directs synthesis of the longer NFATc1/B+C isoforms. Contrary to other NFATs, NFATc1/A is unable to promote apoptosis, suggesting that NFATc1/A enhances effector functions without promoting apoptosis of effector T cells.


Journal of Experimental Medicine | 2002

Induction of NFATc2 Expression by Interleukin 6 Promotes T Helper Type 2 Differentiation

Sean A. Diehl; Chi-Wing Chow; Linda K. Weiss; Alois Palmetshofer; Thomas Twardzik; Laura Rounds; Edgar Serfling; Roger J. Davis; Juan Anguita; Mercedes Rincon

Interleukin (IL)-6 is produced by professional antigen-presenting cells (APCs) such as B cells, macrophages, and dendritic cells. It has been previously shown that APC-derived IL-6 promotes the differentiation of naive CD4+ T cells into effector T helper type 2 (Th2) cells. Here, we have studied the molecular mechanism for IL-6–mediated Th2 differentiation. During the activation of CD4+ T cells, IL-6 induces the production of IL-4, which promotes the differentiation of these cells into effector Th2 cells. Regulation of IL-4 gene expression by IL-6 is mediated by nuclear factor of activated T cells (NFAT), as inhibition of NFAT prevents IL-6–driven IL-4 production and Th2 differentiation. IL-6 upregulates NFAT transcriptional activity by increasing the levels of NFATc2. The ability of IL-6 to promote Th2 differentiation is impaired in CD4+ T cells that lack NFATc2, demonstrating that NFATc2 is required for regulation of IL-4 gene expression by IL-6. Regulation of NFATc2 expression and NFAT transcriptional activity represents a novel pathway by which IL-6 can modulate gene expression.


Journal of Experimental Medicine | 2005

NFATc2 and NFATc3 transcription factors play a crucial role in suppression of CD4+ T lymphocytes by CD4+ CD25+ regulatory T cells

Tobias Bopp; Alois Palmetshofer; Edgar Serfling; Valeska Heib; Steffen Schmitt; Christoph Richter; Matthias Klein; Hansjörg Schild; Edgar Schmitt; Michael Stassen

The phenotype of NFATc2−/− c3−/− (double knockout [DKO]) mice implies a disturbed regulation of T cell responses, evidenced by massive lymphadenopathy, splenomegaly, and autoaggressive phenomena. The population of CD4+ CD25+ T cells from DKO mice lacks regulatory capacity, except a small subpopulation that highly expresses glucocorticoid-induced tumor necrosis factor receptor family–related gene (GITR) and CD25. However, neither wild-type nor DKO CD4+ CD25+ regulatory T cells (T reg cells) are able to suppress proliferation of DKO CD4+ CD25− T helper cells. Therefore, combined NFATc2/c3 deficiency is compatible with the development of CD4+ CD25+ T reg cells but renders conventional CD4+ T cells unresponsive to suppression, underlining the importance of NFAT proteins for sustaining T cell homeostasis.


Molecular and Cellular Biology | 1993

Transforming growth factor beta and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site.

T Brabletz; I Pfeuffer; E Schorr; F Siebelt; T Wirth; Edgar Serfling

Transforming growth factor beta (TGF-beta) has a growth-inhibitory effect on numerous different cell types of the immune system, including T lymphocytes. We show in this study that the inhibitory action of TGF-beta on T lymphocytes is accompanied by a block of interleukin 2 (IL-2) gene expression which is mediated, at least in part, by inhibition of IL-2 promoter/enhancer activity. The functional analysis of cis-regulatory (proto-enhancer) elements of the IL-2 enhancer/promoter region showed that the most TGF-beta-responsive element maps to its so-called upstream promoter site. The proto-enhancer activity of the upstream promoter site element is also inhibited by cyclosporin A. The upstream promoter site DNA harbors two noncanonical, closely linked binding sequences for octamer and AP-1-like factors. Both sites are involved in the establishment of IL-2 enhancer activity. Since the activity of genuine octamer sites but not that of AP-1-binding sites is also impaired by TGF-beta and cyclosporin A in El4 T lymphoma cells, we conclude that both immunosuppressives interfere with the activity but not the DNA binding of octamer factors in T lymphocytes.


Journal of Immunology | 2001

IL-9 and IL-13 Production by Activated Mast Cells Is Strongly Enhanced in the Presence of Lipopolysaccharide: NF-κB Is Decisively Involved in the Expression of IL-9

Michael Stassen; Christian Müller; Martina Arnold; Lothar Hültner; Stefan Klein-Hessling; Christine Neudörfl; Tanja Reineke; Edgar Serfling; Edgar Schmitt

Mast cells, due to their ability to produce a large panel of mediators and cytokines, participate in a variety of processes in adaptive and innate immunity. Herein we report that in primary murine bone marrow-derived mast cells activated with ionomycin or IgE-Ag the bacterial endotoxin LPS strongly enhances the expression of IL-9 and IL-13, but not IL-4. This costimulatory effect of LPS is absent in activated mast cells derived from the LPS-hyporesponsive mouse strain BALB/c-LPSd, although in these cells the proinflammatory cytokine IL-1 can still substitute for LPS. The enhanced production of mast cell-derived IL-13 in the presence of IL-1 is a novel observation. Coactivation of mast cells with LPS leads to a synergistic activation of NF-κB, which is shown by an NF-κB-driven reporter gene construct. In the presence of an inhibitor of NF-κB activation, the production of IL-9 is strongly decreased, whereas the expression of IL-13 is hardly reduced, and that of IL-4 is not affected at all. NF-κB drives the expression of IL-9 via three NF-κB binding sites within the IL-9 promoter, which we characterize using gel shift analyses and reporter gene assays. In the light of recent reports that strongly support critical roles for IL-9 and IL-13 in allergic lung inflammation, our results emphasize the potential clinical importance of LPS as an enhancer of mast cell-derived IL-9 and IL-13 production in the course of inflammatory reactions and allergic diseases.


Immunity | 1999

CBP/p300 Integrates Raf/Rac-Signaling Pathways in the Transcriptional Induction of NF-ATc during T Cell Activation

Andris Avots; Mathias Buttmann; Sergei Chuvpilo; Cornelia Escher; Ute Smola; Andrew J. Bannister; Ulf R. Rapp; Tony Kouzarides; Edgar Serfling

NF-ATc, an inducibly expressed transcription factor, controls gene expression in T lymphocytes and cardiomyocytes. We show here that the transcriptional co-activators CBP/p300 bind to and control the activity of the inducible N-terminal transactivation domain of NF-ATc, TAD-A. Similar to the N terminal transactivation domain of c-Jun, TAD-A is inducibly phosphorylated, but this phosphorylation is dispensable for the interaction with CBP/p300. Constitutive active versions of c-Raf and Rac synergistically enhance the CBP/p300-mediated increase of TAD-A activity, indicating the important role CBP/p300 plays in the integration of T cell activation signals. Since a mutation of CBP abolishing HAT activity is almost as active as wild-type CBP in T cells, functions of CBP/p300 other than histone acetylation appear to control the NF-AT-dependent transcription in T cells.


Molecular and Cellular Biology | 2003

Proteasome Inhibition Results in TRAIL Sensitization of Primary Keratinocytes by Removing the Resistance-Mediating Block of Effector Caspase Maturation

Martin Leverkus; Martin R. Sprick; Tina Wachter; Thilo Mengling; Bernd Baumann; Edgar Serfling; Eva-B. Bröcker; Matthias Goebeler; Manfred Neumann; Henning Walczak

ABSTRACT Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) exerts potent cytotoxic activity against transformed keratinocytes, whereas primary keratinocytes are relatively resistant. In several cell types, inhibition of the proteasome sensitizes for TRAIL-induced apoptosis by interference with NF-κB activation. Here we describe a novel intracellular mechanism of TRAIL resistance in primary cells and how this resistance is removed by proteasome inhibitors independent of NF-κB in primary human keratinocytes. This sensitization was not mediated at the receptor-proximal level of TRAIL DISC formation or caspase 8 activation but further downstream. Activation of caspase 3 was critical, as it only occurred when mitochondrial apoptotic pathways were activated, as reflected by Smac/DIABLO, HtrA2, and cytochrome c release. Smac/DIABLO and HtrA2 are needed to release the X-linked inhibitor-of-apoptosis protein (XIAP)-mediated block of full caspase 3 maturation. XIAP can effectively block caspase 3 maturation and, intriguingly, is highly expressed in primary but not in transformed keratinocytes. Ectopic XIAP expression in transformed keratinocytes resulted in increased resistance to TRAIL. Our data suggest that breaking of this resistance via proteasome inhibitors, which are potential anticancer drugs, may sensitize certain primary cells to TRAIL-induced apoptosis and could thereby complicate the clinical applicability of a combination of TRAIL receptor agonists with proteasome inhibitors.

Collaboration


Dive into the Edgar Serfling's collaboration.

Top Co-Authors

Avatar

Andris Avots

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge