Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edith Monteagudo is active.

Publication


Featured researches published by Edith Monteagudo.


Journal of Medicinal Chemistry | 2008

Discovery of Raltegravir, a Potent, Selective Orally Bioavailable HIV-Integrase Inhibitor for the Treatment of HIV-AIDS Infection

Vincenzo Summa; Alessia Petrocchi; Fabio Bonelli; Benedetta Crescenzi; Monica Donghi; Marco Ferrara; Fabrizio Fiore; Cristina Gardelli; Odalys Gonzalez Paz; Daria J. Hazuda; Philip Jones; Olaf Kinzel; Ralph Laufer; Edith Monteagudo; Ester Muraglia; Emanuela Nizi; Federica Orvieto; Paola Pace; Giovanna Pescatore; Rita Scarpelli; Kara A. Stillmock; Marc Witmer; Michael Rowley

Human immunodeficiency virus type-1 (HIV-1) integrase is one of the three virally encoded enzymes required for replication and therefore a rational target for chemotherapeutic intervention in the treatment of HIV-1 infection. We report here the discovery of Raltegravir, the first HIV-integrase inhibitor approved by FDA for the treatment of HIV infection. It derives from the evolution of 5,6-dihydroxypyrimidine-4-carboxamides and N-methyl-4-hydroxypyrimidinone-carboxamides, which exhibited potent inhibition of the HIV-integrase catalyzed strand transfer process. Structural modifications on these molecules were made in order to maximize potency as HIV-integrase inhibitors against the wild type virus, a selection of mutants, and optimize the selectivity, pharmacokinetic, and metabolic profiles in preclinical species. The good profile of Raltegravir has enabled its progression toward the end of phase III clinical trials for the treatment of HIV-1 infection and culminated with the FDA approval as the first HIV-integrase inhibitor for the treatment of HIV-1 infection.


Antimicrobial Agents and Chemotherapy | 2012

MK-5172, a Selective Inhibitor of Hepatitis C Virus NS3/4a Protease with Broad Activity across Genotypes and Resistant Variants

Vincenzo Summa; Steven W. Ludmerer; John A. McCauley; Christine Fandozzi; Christine Burlein; Giuliano Claudio; Paul J. Coleman; Jillian DiMuzio; Marco Ferrara; Marcello Di Filippo; Adam T. Gates; Donald J. Graham; Steven Harper; Daria J. Hazuda; Carolyn McHale; Edith Monteagudo; Vincenzo Pucci; Michael Rowley; Michael T. Rudd; Aileen Soriano; Mark W. Stahlhut; Joseph P. Vacca; David B. Olsen; Nigel Liverton; Steven S. Carroll

ABSTRACT HCV NS3/4a protease inhibitors are proven therapeutic agents against chronic hepatitis C virus infection, with boceprevir and telaprevir having recently received regulatory approval as add-on therapy to pegylated interferon/ribavirin for patients harboring genotype 1 infections. Overcoming antiviral resistance, broad genotype coverage, and a convenient dosing regimen are important attributes for future agents to be used in combinations without interferon. In this communication, we report the preclinical profile of MK-5172, a novel P2-P4 quinoxaline macrocyclic NS3/4a protease inhibitor currently in clinical development. The compound demonstrates subnanomolar activity against a broad enzyme panel encompassing major hepatitis C virus (HCV) genotypes as well as variants resistant to earlier protease inhibitors. In replicon selections, MK-5172 exerted high selective pressure, which yielded few resistant colonies. In both rat and dog, MK-5172 demonstrates good plasma and liver exposures, with 24-h liver levels suggestive of once-daily dosing. When administered to HCV-infected chimpanzees harboring chronic gt1a or gt1b infections, MK-5172 suppressed viral load between 4 to 5 logs at a dose of 1 mg/kg of body weight twice daily (b.i.d.) for 7 days. Based on its preclinical profile, MK-5172 is anticipated to be broadly active against multiple HCV genotypes and clinically important resistance variants and highly suited for incorporation into newer all-oral regimens.


Journal of Medicinal Chemistry | 2009

Discovery of 2-{4-[(3S)-piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide (MK-4827): a novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and -2 mutant tumors.

Philip Jones; Sergio Altamura; Julia K. Boueres; Federica Ferrigno; Massimiliano Fonsi; Claudia Giomini; Stefania Lamartina; Edith Monteagudo; Jesus M. Ontoria; Maria Vittoria Orsale; Maria Cecilia Palumbi; Silvia Pesci; Giuseppe Roscilli; Rita Scarpelli; Carsten Schultz-Fademrecht; Carlo Toniatti; Michael Rowley

We disclose the development of a novel series of 2-phenyl-2H-indazole-7-carboxamides as poly(ADP-ribose)polymerase (PARP) 1 and 2 inhibitors. This series was optimized to improve enzyme and cellular activity, and the resulting PARP inhibitors display antiproliferation activities against BRCA-1 and BRCA-2 deficient cancer cells, with high selectivity over BRCA proficient cells. Extrahepatic oxidation by CYP450 1A1 and 1A2 was identified as a metabolic concern, and strategies to improve pharmacokinetic properties are reported. These efforts culminated in the identification of 2-{4-[(3S)-piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide 56 (MK-4827), which displays good pharmacokinetic properties and is currently in phase I clinical trials. This compound displays excellent PARP 1 and 2 inhibition with IC(50) = 3.8 and 2.1 nM, respectively, and in a whole cell assay, it inhibited PARP activity with EC(50) = 4 nM and inhibited proliferation of cancer cells with mutant BRCA-1 and BRCA-2 with CC(50) in the 10-100 nM range. Compound 56 was well tolerated in vivo and demonstrated efficacy as a single agent in a xenograft model of BRCA-1 deficient cancer.


Journal of Pharmaceutical and Biomedical Analysis | 2009

A novel strategy for reducing phospholipids-based matrix effect in LC–ESI-MS bioanalysis by means of HybridSPE

Vincenzo Pucci; Serena Di Palma; Anna Alfieri; Fabio Bonelli; Edith Monteagudo

A novel strategy to minimize phospholipids-based matrix effects in bioanalytical LC-MS/MS assays was evaluated. The phospholipids-based matrix effect was investigated with a commercially available electrospray ionization (ESI) source coupled with a triple quadrupole mass spectrometer. A systematic comparison approach of two sample preparation procedures was performed. In particular, the matrix effect on mass spectrometry response in rat and human plasma samples was studied by comparing sample extracts obtained by means of a conventional plasma protein precipitation with acetonitrile and the novel HybridSPE-Precipitation procedure. The HybridSPE dramatically reduced the levels of residual phospholipids in biological samples, leading to significant reduction in matrix effects. This new procedure which combines the simplicity of precipitation with the selectivity of SPE allows to obtain much cleaner extracts than with conventional procedures. The effective targeted removal of phospholipids and proteins in biological plasma samples achieved with the HybridSPE-Precipitation procedure provides significant improvement in bioanalysis and a practical and fast way to ensure the avoidance of phospholipids-based matrix effects.


ACS Medicinal Chemistry Letters | 2012

Discovery of MK-5172, a Macrocyclic Hepatitis C Virus NS3/4a Protease Inhibitor.

Steven Harper; John A. McCauley; Michael T. Rudd; Marco Ferrara; Marcello DiFilippo; Benedetta Crescenzi; Uwe Koch; Alessia Petrocchi; M. Katharine Holloway; John W. Butcher; Joseph J. Romano; Kimberly J. Bush; Kevin F. Gilbert; Charles J. Mcintyre; Kevin Nguyen; Emanuela Nizi; Steven S. Carroll; Steven W. Ludmerer; Christine Burlein; Jillian DiMuzio; Donald J. Graham; Carolyn McHale; Mark Stahlhut; David B. Olsen; Edith Monteagudo; Simona Cianetti; Claudio Giuliano; Vincenzo Pucci; Nicole Trainor; Christine Fandozzi

A new class of HCV NS3/4a protease inhibitors containing a P2 to P4 macrocyclic constraint was designed using a molecular modeling-derived strategy. Building on the profile of previous clinical compounds and exploring the P2 and linker regions of the series allowed for optimization of broad genotype and mutant enzyme potency, cellular activity, and rat liver exposure following oral dosing. These studies led to the identification of clinical candidate 15 (MK-5172), which is active against genotype 1-3 NS3/4a and clinically relevant mutant enzymes and has good plasma exposure and excellent liver exposure in multiple species.


Journal of Medicinal Chemistry | 2008

Design and synthesis of bicyclic pyrimidinones as potent and orally bioavailable HIV-1 integrase inhibitors.

Ester Muraglia; Olaf Kinzel; Cristina Gardelli; Benedetta Crescenzi; Monica Donghi; Marco Ferrara; Emanuela Nizi; Federica Orvieto; Giovanna Pescatore; Ralph Laufer; Odalys Gonzalez-Paz; Annalise Di Marco; Fabrizio Fiore; Edith Monteagudo; Massimiliano Fonsi; Peter J. Felock; Michael Rowley; Vincenzo Summa

HIV integrase is one of the three enzymes encoded by HIV genome and is essential for viral replication, but integrase inhibitors as marketed drugs have just very recently started to emerge. In this study, we show the evolution from the N-methylpyrimidinone structure to bicyclic pyrimidinones. Introduction of a suitably substituted amino moiety modulated the physical-chemical properties of the molecules and conferred nanomolar activity in the inhibition of spread of HIV-1 infection in cell culture. An extensive SAR study led to sulfamide (R)- 22b, which inhibited the strand transfer with an IC50 of 7 nM and HIV infection in MT4 cells with a CIC95 of 44 nM, and ketoamide (S)- 28c that inhibited strand transfer with an IC50 of 12 nM and the HIV infection in MT4 cells with a CIC95 of 13 nM and exhibited a good pharmacokinetic profile when dosed orally to preclinical species.


Journal of Peptide Science | 2011

DPP‐IV‐resistant, long‐acting oxyntomodulin derivatives

Alessia Santoprete; Elena Capito; Paul E. Carrington; Alessandro Pocai; Marco Finotto; Annunziata Langella; Paolo Ingallinella; Karolina Zytko; Simone Bufali; Simona Cianetti; Maria Veneziano; Fabio Bonelli; Lan Zhu; Edith Monteagudo; Donald J. Marsh; Ranabir SinhaRoy; Elisabetta Bianchi; Antonello Pessi

Obesity is one of the major risk factors for type 2 diabetes, and the development of agents, that can simultaneously achieve glucose control and weight loss, is being actively pursued. Therapies based on peptide mimetics of the gut hormone glucagon‐like peptide 1 (GLP‐1) are rapidly gaining favor, due to their ability to increase insulin secretion in a strictly glucose‐dependent manner, with little or no risk of hypoglycemia, and to their additional benefit of causing a modest, but durable weight loss. Oxyntomodulin (OXM), a 37‐amino acid peptide hormone of the glucagon (GCG) family with dual agonistic activity on both the GLP‐1 (GLP1R) and the GCG (GCGR) receptors, has been shown to reduce food intake and body weight in humans, with a lower incidence of treatment‐associated nausea than GLP‐1 mimetics. As for other peptide hormones, its clinical application is limited by the short circulatory half‐life, a major component of which is cleavage by the enzyme dipeptidyl peptidase IV (DPP‐IV). SAR studies on OXM, described herein, led to the identification of molecules resistant to DPP‐IV degradation, with increased potency as compared to the natural hormone. Analogs derivatized with a cholesterol moiety display increased duration of action in vivo. Moreover, we identified a single substitution which can change the OXM pharmacological profile from a dual GLP1R/GCGR agonist to a selective GLP1R agonist. The latter finding enabled studies, described in detail in a separate study (Pocai A, Carrington PE, Adams JR, Wright M, Eiermann G, Zhu L, Du X, Petrov A, Lassman ME, Jiang G, Liu F, Miller C, Tota LM, Zhou G, Zhang X, Sountis MM, Santoprete A, Capitò E, Chicchi GG, Thornberry N, Bianchi E, Pessi A, Marsh DJ, SinhaRoy R. Glucagon‐like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 2009; 58: 2258–2266), which highlight the potential of GLP1R/GCGR dual agonists as a potentially superior class of therapeutics over the pure GLP1R agonists currently in clinical use. Copyright


Journal of Medicinal Chemistry | 2008

A novel series of potent and selective ketone histone deacetylase inhibitors with antitumor activity in vivo.

Philip Jones; Sergio Altamura; Raffaele De Francesco; Odalys Gonzalez Paz; Olaf Kinzel; Giuseppe Mesiti; Edith Monteagudo; Giovanna Pescatore; Michael Rowley; Maria Verdirame; Christian Steinkühler

Histone deacetylase (HDAC) inhibitors offer a promising strategy for cancer therapy, and the first generation HDAC inhibitors are currently in the clinic. Entirely novel ketone HDAC inhibitors have been developed from the cyclic tetrapeptide apicidin. These compounds show class I subtype selectivity and levels of cellular activity comparable to clinical candidates. A representative example has demonstrated tumor growth inhibition in a human colon HCT-116 carcinoma xenograft model comparable to known inhibitors.


Bioorganic & Medicinal Chemistry | 2002

Novel anthracycline oligosaccharides: influence of chemical modifications of the carbohydrate moiety on biological activity.

A Cipollone; M Berettoni; M Bigioni; M Binaschi; C Cermele; Edith Monteagudo; L Olivieri; D Palomba; F Animati; C Goso; Carlo Alberto Maggi

Several observations highlight the importance of the carbohydrate moiety for the biological activity of antitumoural anthracyclines. Here is reported the synthesis, cytotoxicity and topoisomerase II-mediated DNA cleavage intensity of the new oligosaccharide anthracyclines 1--4 modified in the sugar residue. Evaluation of cytotoxic potency on different cell lines, resulted in quite similar values among the different analogues. On the other hand, topoisomerase II-mediated DNA breaks level was different for the various compounds, and was not related to cytotoxicity, thus supporting previous observations reported for some monosaccharide anthracyclines modified in the carbohydrate portion.


Drug Metabolism and Disposition | 2009

Quantitative Prediction of Human Clearance Guiding the Development of Raltegravir (MK-0518, Isentress) and Related HIV Integrase Inhibitors

Ralph Laufer; Odalys Gonzalez Paz; Annalise Di Marco; Fabio Bonelli; Edith Monteagudo; Vincenzo Summa; Michael Rowley

Human HIV integrase inhibitors are a novel class of antiretroviral drugs that act by blocking incorporation of the proviral DNA into the host cell genome, a crucial step in the life cycle of HIV. In the present work, quantitative methods for prediction of human pharmacokinetics were used to guide the selection of development candidates from a series of dihydroxypyrimidine and N-methylpyrimidinone carboxamide inhibitors of HIV integrase, which are cleared mainly by O-glucuronidation. The pharmacokinetics of 10 drugs from this series was determined in several preclinical species, including rats, dogs, rhesus monkeys, and rabbits, and the in vitro turnover, plasma protein binding, and blood/plasma partition ratio were studied using preparations from both preclinical species and humans. Two clearance prediction methods, based on physiologically based scaling or allometric scaling normalized for differences in microsomal turnover, were used to extrapolate human clearance. For three clinical candidates, including the novel AIDS drug raltegravir (MK-0518, Isentress), oral drug exposure was predicted and compared with that observed in healthy human volunteers. Both scaling methods gave a reasonable correspondence between predicted and observed oral exposure. Prediction errors for the physiologically based method were less than 1.7-fold for two drugs, including raltegravir, and less than 3.5-fold for one drug. The exposures predicted using normalized allometric scaling were within 1.1- to 1.5-fold of observed values for all three compounds. The accuracy of prediction by normalized allometric scaling was similar when using data from either four preclinical species or from rats and dogs only. The prediction methods used may be applicable to other drugs cleared predominantly by glucuronidation.

Collaboration


Dive into the Edith Monteagudo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vincenzo Summa

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge